ω-titanium (Ti) is a high-pressure phase that is conventionally perceived to be brittle and nondeformable, although direct investigations of its deformation process remain scarce. In this work, we perform molecular dynamics simulations to study the deformation process of ω-Ti with initial defects and find that stress-induced ωα martensitic transformation can cause extensive plasticity in ω-Ti under various loading directions. Moreover, for the first time, we demonstrate that four types of transformation twins—{112¯1}, {112¯2}, {101¯2}, and {101¯1} twins—can be formed through the ωα martensitic phase transformation. This work advances the understanding of plastic deformation in ω-Ti and unveils the essential role of the metastable ω-phase in the formation of transformation twins.

1.
I. J.
Polmear
, “
Recent developments in light alloys
,”
Mater. Trans. JIM
37
,
12
31
(
1996
).
2.
W. D.
Brewer
,
R. K.
Bird
, and
T. A.
Wallace
, “
Titanium alloys and processing for high speed aircraft
,”
Mater. Sci. Eng. A
243
,
299
304
(
1998
).
3.
R.
Schutz
and
H.
Watkins
, “
Recent developments in titanium alloy application in the energy industry
,”
Mater. Sci. Eng. A
243
,
305
315
(
1998
).
4.
S.
Sikka
,
Y.
Vohra
, and
R.
Chidambaram
, “
Omega phase in materials
,”
Prog. Mater. Sci.
27
,
245
310
(
1982
).
5.
P.
Frost
,
W.
Parris
,
L.
Hirsch
,
J.
Doig
, and
C.
Schwartz
, “
Isothermal transformation of titanium-chromium alloys
,”
Trans. ASM
46
,
231
256
(
1954
).
6.
J. C.
Williams
,
B. S.
Hickman
, and
H. L.
Marcus
, “
The effect of omega phase on the mechanical properties of titanium alloys
,”
Metall. Mater. Trans. B
2
,
1913
1919
(
1971
).
7.
A.
Kumar
,
C. A.
Bronkhorst
, and
T.
Lookman
, “
First-principles study of the α-ω phase transformation in Ti and Zr coupled to slip modes
,”
J. Appl. Phys.
123
,
045903
(
2018
).
8.
F. R.
Brotzen
,
E. L.
Harmon
, and
A. R.
Troiano
, “
Decomposition of beta titanium
,”
JOM
7
,
413
419
(
1955
).
9.
B.
Hickman
, “
The formation of omega phase in titanium and zirconium alloys: A review
,”
J. Mater. Sci.
4
,
554
563
(
1969
).
10.
M.
Tane
,
Y.
Okuda
,
Y.
Todaka
,
H.
Ogi
, and
A.
Nagakubo
, “
Elastic properties of single-crystalline ω phase in titanium
,”
Acta Mater.
61
,
7543
7554
(
2013
).
11.
H.
Zong
,
D.
Xue
,
X.
Ding
, and
T.
Lookman
, “
Phase transformations in titanium: Anisotropic deformation of ω phase
,”
J. Phys.
500
,
112042
(
2014
).
12.
Y.
Todaka
,
J.
Sasaki
,
T.
Moto
, and
M.
Umemoto
, “
Bulk submicrocrystalline ω-Ti produced by high-pressure torsion straining
,”
Scr. Mater.
59
,
615
618
(
2008
).
13.
N.
Adachi
,
Y.
Todaka
,
K.
Irie
, and
M.
Umemoto
, “
Phase transformation kinetics of ω-phase in pure Ti formed by high-pressure torsion
,”
J. Mater. Sci.
51
,
2608
2615
(
2016
).
14.
L.
Cao
and
M.
Koslowski
, “
Effect of microstructural uncertainty on the yield stress of nanocrystalline nickel
,”
Acta Mater.
61
,
1413
1420
(
2013
).
15.
L.
Cao
,
A.
Hunter
,
I. J.
Beyerlein
, and
M.
Koslowski
, “
The role of partial mediated slip during quasi-static deformation of 3D nanocrystalline metals
,”
J. Mech. Phys. Solids
78
,
415
426
(
2015
).
16.
A. H.
Zahiri
,
P.
Chakraborty
,
Y.
Wang
, and
L.
Cao
, “
Strong strain hardening in ultrafast melt-quenched nanocrystalline Cu: The role of fivefold twins
,”
J. Appl. Phys.
126
,
075103
(
2019
).
17.
Y.
Cui
,
P.
Lin
,
Z.
Liu
, and
Z.
Zhuang
, “
Theoretical and numerical investigations of single arm dislocation source controlled plastic flow in fcc micropillars
,”
Int. J. Plast.
55
,
279
292
(
2014
).
18.
J.
Ombogo
,
A. H.
Zahiri
,
T.
Ma
, and
L.
Cao
, “
Nucleation of {101¯2} twins in magnesium through reversible martensitic phase transformation
,”
Metals
10
,
1030
(
2020
).
19.
Z.
Nishiyama
,
M.
Oka
, and
H.
Nakagawa
, “
{101¯1} transformation twins in titanium
,”
Trans. Japan Inst. Metals
7
,
174
177
(
1966
).
20.
C.
Hammond
and
P.
Kelly
, “
The crystallography of titanium alloy martensites
,”
Acta Metallurg.
17
,
869
882
(
1969
).
21.
Y.
Deng
and
Z.
Qin
, “
Triple twins and martensitic transformation in Ti-5Al-2Mo-3Zr alloy
,”
J. Mater. Sci.
28
,
5330
5334
(
1993
).
22.
S.
Wang
,
M.
Aindow
, and
M.
Starink
, “
Effect of self-accommodation on α/α boundary populations in pure titanium
,”
Acta Mater.
51
,
2485
2503
(
2003
).
23.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Computat. Phys.
117
,
1
19
(
1995
).
24.
M. I.
Mendelev
,
T. L.
Underwood
, and
G. J.
Ackland
, “
Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium
,”
J. Chem. Phys.
145
,
154102
(
2016
).
25.
D. J.
Evans
and
B. L.
Holian
, “
The Nose–Hoover thermostat
,”
J. Chem. Phys.
83
,
4069
4074
(
1985
).
26.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
7190
(
1981
).
27.
P.
Chen
,
F.
Wang
, and
B.
Li
, “
Transitory phase transformations during {1012} twinning in titanium
,”
Acta Mater.
171
,
65
78
(
2019
).
28.
J.
Ren
,
Q.
Sun
,
L.
Xiao
,
X.
Ding
, and
J.
Sun
, “
Phase transformation behavior in titanium single-crystal nanopillars under [0 0 0 1] orientation tension: A molecular dynamics simulation
,”
Comput. Mater. Sci.
92
,
8
12
(
2014
).
29.
L.
Chang
,
C.-Y.
Zhou
,
L.-L.
Wen
,
J.
Li
, and
X.-H.
He
, “
Molecular dynamics study of strain rate effects on tensile behavior of single crystal titanium nanowire
,”
Comput. Mater. Sci.
128
,
348
358
(
2017
).
30.
S.
Rawat
and
N.
Mitra
, “
Compression twinning and structural phase transformation of single crystal titanium under uniaxial compressive strain conditions: Comparison of inter-atomic potentials
,”
Comput. Mater. Sci.
126
,
228
237
(
2017
).
31.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool
,”
Model. Simul. Mater. Sci. Eng.
18
,
015012
(
2009
).
32.
D.
Faken
and
H.
Jónsson
, “
Systematic analysis of local atomic structure combined with 3D computer graphics
,”
Comput. Mater. Sci
2
,
279
286
(
1994
).
33.
J. D.
Honeycutt
and
H. C.
Andersen
, “
Molecular dynamics study of melting and freezing of small Lennard-Jones clusters
,”
J. Phys. Chem.
91
,
4950
4963
(
1987
).
34.
R. G.
Hennig
,
T. J.
Lenosky
,
D. R.
Trinkle
,
S. P.
Rudin
, and
J. W.
Wilkins
, “
Classical potential describes martensitic phase transformations between the α, β, and ω titanium phases
,”
Phys. Rev. B
78
,
054121
(
2008
).
35.
M. P.
Usikov
and
V. A.
Zilbershtein
, “
The orientation relationship between the ω-phases of titanium and zirconium
,”
Phys. Status Solidi A
19
,
53
58
(
1973
).
36.
S.
Wang
,
M.
Sui
,
Y.
Chen
et al., “
Microstructural fingerprints of phase transitions in shock-loaded iron
,”
Sci. Rep.
3
,
1086
(
2013
).
37.
D.
Schryvers
, “
Martensitic and related transformations in Ni-Al alloys
,”
J. Phys. IV
5
,
C2-225
C2-234
(
1995
).
38.
M.
Lai
,
T.
Li
, and
D.
Raabe
, “
ω phase acts as a switch between dislocation channeling and joint twinning-and transformation-induced plasticity in a metastable β titanium alloy
,”
Acta Mater.
151
,
67
77
(
2018
).
39.
S. A.
Mantri
,
F.
Sun
,
D.
Choudhuri
,
T.
Alam
,
B.
Gwalani
,
F.
Prima
, and
R.
Banerjee
, “
Deformation induced hierarchical twinning coupled with omega transformation in a metastable β-ti alloy
,”
Sci. Rep.
9
,
1
8
(
2019
).
40.
D. A.
Porter
and
K. E.
Easterling
,
Phase Transformations in Metals and Alloys (revised reprint)
(
CRC Press
,
2009
).
41.
J.
Silcock
, “
An x-ray examination of the to phase in TiV, TiMo and TiCr alloys
,”
Acta Metallur.
6
,
481
493
(
1958
).
42.
Y.
Vohra
,
S.
Sikka
,
S.
Vaidya
, and
R.
Chidambaram
, “
Impurity effects and reaction kinetics of the pressure-induced αω transformation in Ti
,”
J. Phys. Chem. Solids
38
,
1293
1296
(
1977
).
43.
Y.
Vohra
,
S.
Sikka
,
E.
Menon
, and
R.
Krishnan
, “
Direct evidence of intermediate state during alpha-omega transformation in Ti-V alloy
,”
Acta Metallur.
28
,
683
685
(
1980
).
44.
H.
Xia
,
G.
Parthasarathy
,
H.
Luo
,
Y. K.
Vohra
, and
A. L.
Ruoff
, “
Crystal structures of group iva metals at ultrahigh pressures
,”
Phys. Rev. B
42
,
6736
(
1990
).
45.
S.
Song
and
G.
Gray III
, “
Microscopic and crystallographic aspects of retained omega phase in shock-loaded zirconium and its formation mechanism
,”
Philos. Mag. A
71
,
275
290
(
1995
).
46.
D.
Trinkle
,
R.
Hennig
,
S.
Srinivasan
,
D.
Hatch
,
M.
Jones
,
H.
Stokes
,
R.
Albers
, and
J.
Wilkins
, “
New mechanism for the α to ω martensitic transformation in pure titanium
,”
Phys. Rev. Lett.
91
,
025701
(
2003
).
47.
G.
Jyoti
,
R.
Tewari
,
K.
Joshi
,
D.
Srivastava
,
G.
Dey
,
S.
Gupta
,
S.
Sikka
, and
S.
Banerjee
, “Alpha to omega transition in shock compressed zirconium: Crystallographic aspects,” in Defect and Diffusion Forum, Vol. 279 (Trans Tech Publications, 2008), pp. 133–138.
48.
H.
Zong
,
T.
Lookman
,
X.
Ding
,
S.-N.
Luo
, and
J.
Sun
, “
Anisotropic shock response of titanium: Reorientation and transformation mechanisms
,”
Acta Mater.
65
,
10
18
(
2014
).
49.
T.
Swinburne
,
M.
Glavicic
,
K.
Rahman
,
N.
Jones
,
J.
Coakley
,
D.
Eakins
,
T.
White
,
V.
Tong
,
D.
Milathianaki
, and
G.
Williams
et al., “
Picosecond dynamics of a shock-driven displacive phase transformation in Zr
,”
Phys. Rev. B
93
,
144119
(
2016
).
50.
W.
Petry
,
A.
Heiming
,
J.
Trampenau
,
M.
Alba
,
C.
Herzig
,
H. R.
Schober
, and
G.
Vogl
, “
Phonon dispersion of the bcc phase of group-IV metals. I. Bcc titanium
,”
Phys. Rev. B
43
,
10933
10947
(
1991
).
You do not currently have access to this content.