Dye-encapsulated single-walled carbon nanotubes (dye@SWCNTs) were physically modified to fabricate a water-dispersible dye@SWCNT/dendrimer hybrid. A photocatalytic H2 evolution reaction that uses this dye@SWCNT hybrid as a particulate photocatalyst was conducted in the presence of an electron-relay molecule [methyl viologen (MV2+)], a co-catalyst [PVP–Pt; poly(vinylpyrrolidone)], and a sacrificial donor [1-benzyl-1,4-dihydronicotinamide]. Photoinduced electron transfer occurs between the encapsulated dye molecule inside the SWCNT and the MV2+ ion outside the SWCNT. This is followed by the relay of the electron to the co-catalyst, which reduces H+ to generate H2. The external quantum yield of the H2 evolution reached a maximum of 8.5% under irradiation with light at 510 nm. Notably, the photoinduced electron transfer between the molecules on the inside and the outside of the SWCNT proceeded smoothly despite the possibility of energy migration from the encapsulated dye to the SWCNT or the possibility of charge recombination.

1.
J. L.
Blackburn
,
ACS Energy Lett.
2
,
1598
1613
(
2017
).
2.
S. L.
Guillot
,
K. S.
Mistry
,
A. D.
Avery
,
J.
Richard
,
A.-M.
Dowgiallo
,
P. F.
Ndione
,
J.
Lagemaat
,
M. O.
Reese
, and
J. L.
Blackburn
,
Nanoscale
7
,
6556
6566
(
2015
).
3.
R. M.
Jain
,
R.
Howden
,
K.
Tvrdy
,
S.
Shimizu
,
A. J.
Hilmer
,
T. P.
McNicholas
,
K. K.
Gleason
, and
M. S.
Strano
,
Adv. Mater.
24
,
4436
4439
(
2012
).
4.
D. J.
Bindl
,
M.
Wu
,
F. C.
Prehn
, and
M. S.
Arnold
,
Nano Lett.
11
,
455
460
(
2011
).
5.
M.
Pfohl
,
K.
Glaser
,
J.
Ludwig
,
D. D.
Tune
,
S.
Dehm
,
C.
Kayser
,
A.
Colsmann
,
R.
Krupke
, and
B. S.
Flavel
,
Adv. Energy Mater.
6
(
1−9
),
1501345
(
2016
).
6.
M. J.
Shea
and
M. S.
Arnold
,
Appl. Phys. Lett.
102
(
1−5
),
243101
(
2013
).
7.
D. J.
Bindl
and
M. S.
Arnold
,
J. Phys. Chem. C
117
,
2390
2395
(
2013
).
8.
M. J.
Shea
,
J.
Wang
,
J. T.
Flach
,
M. T.
Zanni
, and
M. S.
Arnold
,
APL Mater.
6
(
1–7
),
056104
(
2018
).
9.
Y.
Takaguchi
,
M.
Tamura
,
Y.
Sako
,
Y.
Yanagimoto
,
S.
Tsuboi
,
T.
Uchida
,
K.
Shimamura
,
S.
Kimura
,
T.
Wakahara
,
Y.
Maeda
, and
T.
Akasaka
,
Chem. Lett.
34
,
1608
1609
(
2005
).
10.
A. S. D.
Sandanayaka
,
Y.
Takaguchi
,
Y.
Sako
,
M.
Tamura
, and
O.
Ito
,
Adv. Sci. Lett.
3
,
353
357
(
2010
).
11.
H.
Suzuki
,
Y.
Iizumi
,
M.
Tange
,
S.-K.
Joung
,
A.
Furube
,
T.
Wada
,
T.
Tajima
,
Y.
Takaguchi
, and
T.
Okazaki
,
Fuller. Nanotub. Carbon Nanostruct.
22
,
75
87
(
2014
).
12.
T.
Tajima
,
W.
Sakata
,
T.
Wada
,
A.
Tsutsui
,
S.
Nishimoto
,
M.
Miyake
, and
Y.
Takaguchi
,
Adv. Mater.
23
,
5750
5754
(
2011
).
13.
Y.
Sasada
,
T.
Tajima
,
T.
Wada
,
T.
Uchida
,
M.
Nishi
,
T.
Ohkubo
, and
Y.
Takaguchi
,
New J. Chem.
37
,
4214
4219
(
2013
).
14.
K.
Kurniawan
,
T.
Tajima
,
Y.
Kubo
,
H.
Miyake
,
W.
Kurashige
,
Y.
Negishi
, and
Y.
Takaguchi
,
RSC Adv.
7
,
31767
31770
(
2017
).
15.
N.
Murakami
,
Y.
Tango
,
H.
Miyake
,
T.
Tajima
,
Y.
Nishina
,
W.
Kurashige
,
Y.
Negishi
, and
Y.
Takaguchi
,
Sci. Rep.
7
(
1−7
),
43445
(
2017
).
16.
T.
Izawa
,
V.
Kalousek
,
D.
Miyamoto
,
N.
Murakami
,
H.
Miyake
,
T.
Tajima
,
W.
Kurashige
,
Y.
Negishi
,
K.
Ikeue
,
T.
Ohkubo
, and
Y.
Takaguchi
,
Chem. Lett.
48
,
410
413
(
2019
).
17.
Y.
Almadori
,
G.
Delport
,
R.
Chambard
,
L.
Orcin-Chaix
,
A. C.
Selvati
,
N.
Izard
,
A.
Belhboub
,
R.
Aznar
,
B.
Jousselme
,
S.
Campidelli
,
P.
Hermet
,
R.
Le Parc
,
T.
Saito
,
Y.
Sato
,
K.
Suenaga
,
P.
Puech
,
J. S.
Lauret
,
G.
Cassabois
,
J. L.
Bantignies
, and
L.
Alvarez
,
Carbon
149
,
772
780
(
2019
).
18.
K.
Yanagi
,
K.
Iakoubovskii
,
H.
Matsui
,
H.
Matsuzaki
,
H.
Okamoto
,
Y.
Miyata
,
Y.
Maniwa
,
S.
Kazaoui
,
N.
Minami
, and
H.
Kataura
,
J. Am. Chem. Soc.
129
,
4992
4997
(
2007
).
19.
S.
van Bezouw
,
D. H.
Arias
,
R.
Ihly
,
S.
Cambre
,
A. J.
Ferguson
,
J.
Campo
,
J. C.
Johnson
,
J.
Defillet
,
W.
Wenseleers
, and
J. L.
Blackburn
,
ACS Nano
12
,
6881
6894
(
2018
).
20.
S.
Cambre
,
J.
Campo
,
C.
Beirnaert
,
C.
Verlackt
,
P.
Cool
, and
W.
Wenseleers
,
Nat. Nanotechnol.
10
,
248
252
(
2015
).
21.
M.
Pfohl
,
K.
Glaser
,
A.
Graf
,
A.
Mertens
,
D. D.
Tune
,
T.
Puerckhauer
,
A.
Alam
,
L.
Wei
,
Y.
Chen
,
J.
Zaumseil
,
A.
Colsmann
,
R.
Krupke
, and
B. S.
Flavel
,
Adv. Energy Mater.
6
,
1600890
(
2016
).
22.
N.
Murakami
,
H.
Miyake
,
T.
Tajima
,
K.
Nishikawa
,
R.
Hirayama
, and
Y.
Takaguchi
,
J. Am. Chem. Soc.
140
,
3821
3824
(
2018
).
23.
Y.
Takaguchi
,
H.
Miyake
,
T.
Izawa
,
D.
Miyamoto
,
R.
Sagawa
, and
T.
Tajima
,
Phosphorus Sulfur Silicon Relat. Elem.
194
,
707
711
(
2019
).
24.
K.
Ishimoto
,
T.
Tajima
,
H.
Miyake
,
M.
Yamagami
,
W.
Kurashige
,
Y.
Negishi
, and
Y.
Takaguchi
,
Chem. Commun.
54
,
393
396
(
2018
).
25.
S.
Nishimura
,
T.
Tajima
,
T.
Hasegawa
,
Y.
Takaguchi
,
Y.
Oaki
, and
H.
Imai
,
Can. J. Chem.
95
,
935
941
(
2017
).
26.
H.
Hirai
,
Y.
Nakao
,
N.
Toshima
, and
J.
Macromol
,
Sci. Chem. A
13
,
727
750
(
1979
).
27.
K.
Yanagi
,
K.
Iakoubovskii
,
S.
Kazaoui
,
N.
Minami
,
Y.
Maniwa
,
Y.
Miyata
, and
H.
Kataura
,
Phys. Rev. B
74
(
1−5
),
155420
(
2006
).
28.
S.-K.
Joung
,
T.
Okazaki
,
S.
Okada
, and
S.
Iijima
,
Phys. Chem. Chem. Phys.
12
,
8118
8122
(
2010
).
29.
L.
Kavan
,
L.
Dunsch
,
H.
Kataura
,
A.
Oshiyama
,
M.
Otani
, and
S.
Okada
,
J. Phys. Chem. B
107
,
7666
7675
(
2003
).
30.
M. A.
Loi
,
J.
Gao
,
F.
Cordella
,
P.
Blondeau
,
E.
Menna
,
B.
Bártová
,
C.
Hébert
,
S.
Lazar
,
G. A.
Botton
,
M.
Milko
, and
C.
Ambrosch-Draxl
,
Adv. Mater.
22
,
1635
1639
(
2010
).
31.
T.
Okazaki
,
Y.
Iizumi
,
S.
Okubo
,
H.
Kataura
,
Z.
Liu
,
K.
Suenaga
,
Y.
Tahara
,
M.
Yudasaka
,
S.
Okada
, and
S.
Iijima
,
Angew. Chem. Int. Ed.
50
,
4853
4857
(
2011
).
32.
F.
Wang
,
G.
Dukovic
,
L. E.
Brus
, and
T. F.
Heinz
,
Science
308
,
838
841
(
2005
).
33.
G.
Dukovic
,
F.
Wang
,
D.
Song
,
M. Y.
Sfeir
,
T. F.
Heinz
, and
L. E.
Brus
,
Nano Lett.
5
,
2314
2318
(
2005
).
34.
J.
Maultzsch
,
R.
Pomraenke
,
S.
Reich
,
E.
Chang
,
D.
Prezzi
,
A.
Ruini
,
E.
Molinari
,
M. S.
Strano
,
C.
Thomsen
, and
C.
Lienau
,
Phys. Rev. B Condens. Matter Mater. Phys.
72
(
1–4
),
241402
(
2005
).
35.
The HOMO and LUMO levels of (13,8)SWCNT were calculated from the three-dimensional fluorescence spectra of SWCNT/fullerodendron (cf. Ref. 18). The Fermi level was set to zero.
36.
J.
Ding
,
C.
Zhang
,
L.
Wang
,
C.
Lu
,
B.
Zhang
,
Y.
Chen
,
M.
Li
,
G.
Zhai
, and
X.
Zhuang
,
J. Mater. Chem. A
7
,
23337
23360
(
2019
).
37.
C.
Stradowski
,
J. Appl. Polym. Sci.
41
,
2511
2512
(
1990
).
38.
M.
Wolszczak
and
C.
Stradowski
,
Radiat. Phys. Chem.
26
,
625
633
(
1985
).
39.
Y. N.
Gong
and
T. B.
Lu
,
Chem. Commun.
49
,
7711
7713
(
2013
).
40.
The data are also shown in Fig. S4 in the supplementary material.
41.
The importance of the dye/SWCNT heterojunction was confirmed by control experiments (Fig. S5 in the supplementary material). A simple mixture of 1 with the SWCNT/dendrimer hybrid shows a 0.16 μmol/h reaction rate for the generation of H2 and an EQY of 1.9% under exposure to light at 550 nm.

Supplementary Material

You do not currently have access to this content.