Improper ferroelectric Ca8−xSrx[Al12O24](MoO4)2 (x = 0–2) multilayer capacitors (MLCs) were fabricated to study their dielectric and ferroelectric properties for their potential practical applications and reversible switching of electric polarization by an electric field. The substitution of Sr for Ca caused a structural change from polar orthorhombic to non-polar cubic phases at 297 K and decreased the ferroelectric phase transition temperature (Tc). Spontaneous polarization up to ∼0.6 μC/cm2 was performed at 297 K in Ca7.5Sr0.5[Al12O24](MoO4)2 and Ca7Sr[Al12O24](MoO4)2 MLCs by poling with an electric field of 10 MV/m. Furthermore, ferroelectric hysteresis loops from the electric polarization switching were successfully demonstrated in Ca8[Al12O24](MoO4)2 MLCs above 469 K by the application of a high electric field over 50 MV/m, and remnant electric polarization of ∼0.59 μC/cm2 was obtained at 573 K. The results introduce a new avenue for possible applications and new functionalities of improper ferroelectrics with an MLC structure.

1.
V.
Dvořák
,
Ferroelectrics
7
,
1
9
(
1974
).
2.
A. P.
Levanyuk
and
D. G.
Sannikov
,
Sov. Phys. Usp.
17
(
2
),
199
(
1974
).
3.
N. A.
Benedek
and
C. J.
Fennie
,
Phys. Rev. Lett.
106
,
107204
(
2011
).
4.
Y. S.
Oh
,
X.
Luo
,
F.
Huang
,
Y.
Wang
, and
S. -W.
Cheong
,
Nat. Mater.
14
,
407
413
(
2015
).
5.
X. Q.
Liu
,
J. W.
Wu
,
X. X.
Shi
,
H. J.
Zhao
,
H. Y.
Zhou
,
R. H.
Qiu
,
W. Q.
Zhang
, and
X. M.
Chen
,
Appl. Phys. Lett.
106
,
202903
(
2015
).
6.
N. A.
Benedek
,
A. T.
Mulder
, and
C. J.
Fennie
,
Solid State Chem.
195
,
11
20
(
2012
).
7.
A. T.
Mulder
,
N. A.
Benedek
,
J. M.
Rondinelli
, and
C. J.
Fennie
,
Adv. Funct. Mater.
23
,
4810
4820
(
2013
).
8.
X. Q.
Liua
,
B. H.
Chen
,
J. J.
Lu
,
Z. Z.
Hu
, and
X. M.
Chen
,
Appl. Phys. Lett.
113
,
242904
(
2018
).
9.
B.
Gao
,
F. T.
Huang
,
Y.
Wang
,
J. W.
Kim
,
L.
Wang
,
S. J.
Lim
, and
S. W.
Cheong
,
Appl. Phys. Lett.
110
,
222906
(
2017
).
10.
R. X.
Fischer
and
W. H.
Baur
,
Z. Kristallogr.
224
,
185
(
2009
).
11.
W.
Depmeier
,
Phys. Chem. Miner.
15
,
419
426
(
1988
).
12.
N.
Setter
,
M. E.
Mendoza-Alvarez
,
W.
Depmeier
, and
H.
Schmid
,
Ferroelectrics
56
(
1
),
49
52
(
1984
).
13.
Y.
Maeda
,
T.
Wakamatsu
,
A.
Konishi
,
H.
Moriwake
,
C.
Moriyoshi
,
Y.
Kuroiwa
,
K.
Tanabe
,
I.
Terasaki
, and
H.
Taniguchi
,
Phys. Rev. Appl.
7
,
034012
(
2017
).
14.
T.
Wakamatsu
,
K.
Tanabe
,
I.
Terasaki
, and
H.
Taniguchi
,
Phys. Status Solidi RRL
11
,
1700009
(
2017
).
15.
K. M.
Rabe
, and
C. H.
Ahn
, Physics of Ferroelectrics: A Modern Perspective (Jean-Marc Triscone Springer Science & Business Media, 2007).
16.
J. F.
Scott
,
Science
315
,
954
959
(
2007
).
17.
Y.
Sakabe
,
K.
Minai
, and
K.
Wakino
,
Jpn. J. Appl. Phys.
20
,
147
(
1981
).
18.
S.
Van Smaalen
,
R.
Dinnebier
,
H.
Katzke
, and
W.
Depmeier
,
J. Solid State Chem.
129
,
130
(
1997
).
19.
M.
Tanaka
,
Y.
Katsuya
, and
A.
Yamamoto
,
Rev. Sci. Instrum.
79
,
075106
(
2008
).
20.
M.
Tanaka
,
Y.
Katsuya
,
Y.
Matsushita
, and
O.
Sakata
,
J. Ceram. Soc. Jpn.
121
,
287
290
(
2013
).
21.
F.
Izumi
and
K.
Momma
,
Solid State Phenom.
130
,
15
20
(
2007
).
22.
K.
Momma
and
F.
Izumi
,
J. Appl. Crystallogr
44
,
1272
1276
(
2011
).
23.
W.
Depmeier
,
Acta Crystallogr B
44
,
201
207
(
1988
).
24.
D. M.
Tobbens
and
W.
Depmeier
,
Z. Kristallogr.
213
,
522
(
1998
).

Supplementary Material

You do not currently have access to this content.