Analysis of first-order reversal curves (FORCs) is a powerful tool to probe irreversible switching events in nanomagnet assemblies. As in essence switching events are related to the intrinsic properties of the constituents and their interactions, the resulting FORC diagrams contain much information that can be cross-linked and complex to deconvolute. In order to quantify the relevant parameters that drive the FORC diagrams of arrays of perpendicularly magnetized nanomagnets, we present step-by-step simulations of assemblies of hysterons to determine the specific signatures related to different known inputs. While we explored the consequences of dipolar interactions using either mean field or magnetostatic approaches, we completed by taking the hysteron switching field distribution (SFD) as either normal or lognormal. We demonstrated that the transition between FORC diagrams composed of an isolated interaction field distribution (IFD) and a wishbone shape operates via the SFD deviation, σHsw, in the presence of a weakly dispersed interaction field. In the presence of a magnetostatic interaction field, the IFD profile is peaked and a coercive field distribution (CFD) sums to the IFD as σHsw increases. A transition between IFD + CFD and wishbone shapes is clearly demonstrated as a function of the interaction field deviation σHint. In addition, we demonstrate that whatever the considered cases, σHswcan be quantitatively extracted from the FORC diagrams within an error inferior to 10%. These findings are of interest for dipolar coupled perpendicularly magnetized nanomagnets, as in assemblies of magnetic nanowires and nanopillars, as well as bit patterned media.

1.
I. D.
Mayergoyz
,
Phys. Rev. Lett.
56
,
1518
(
1986
).
2.
3.
A. P.
Roberts
,
D.
Heslop
,
X.
Zhao
, and
C. R.
Pike
,
Rev. Geophys.
52
,
557
602
, (
2014
).
4.
C. R.
Pike
,
A. P.
Roberts
, and
K. L.
Verosub
,
J. Appl. Phys.
85
,
6660
(
1999
).
5.
C.-I.
Dobrotă
and
A.
Stancu
,
J. Appl. Phys.
113
,
043928
(
2013
).
6.
C.
Carvallo
and
A.
Muxworthy
,
Geochem. Geophys. Geosyst.
7
,
Q09003
, (
2006
).
7.
S.-C. L. L.
Lappe
,
J. M.
Feinberg
,
A.
Muxworthy
, and
R. J.
Harrison
,
Geochem. Geophys. Geosyst.
14
,
2143
, (
2013
).
8.
X.
Zhao
,
A. P.
Roberts
,
D.
Heslop
,
G. A.
Paterson
,
Y.
Li
, and
J.
Li
,
J. Geophys. Res. Solid Earth
122
,
4767
, (
2017
).
9.
C.
Papusoi
,
K.
Srinivasan
, and
R.
Acharya
,
J. Appl. Phys.
110
,
083908
(
2011
).
10.
C.
Papusoi
,
M.
Desai
, and
R.
Acharya
,
J. Phys. D Appl. Phys.
48
,
215005
(
2015
).
11.
S. N.
Piramanayagam
and
M.
Ranjbar
,
J. Appl. Phys.
111
,
07B728
(
2012
).
12.
H. K.
Tan
,
B.
Varghese
, and
S. N.
Piramanayagam
,
J. Appl. Phys.
116
,
163909
(
2014
).
13.
R. K.
Dumas
,
P. K.
Greene
,
D. A.
Gilbert
,
L.
Ye
,
C.
Zha
,
J.
Åkerman
, and
K.
Liu
,
Phys. Rev. B
90
,
104410
(
2014
).
14.
J. B.
Abugri
,
P. B.
Visscher
,
S.
Gupta
,
P. J.
Chen
, and
R. D.
Shull
,
J. Appl. Phys.
124
,
043901
(
2018
).
15.
D. R.
Cornejo
,
R. D.
Noce
,
T. R. F.
Peixoto
,
N.
Barelli
,
P. T. A.
Sumodjo
, and
A. V.
Benedetti
,
J. Alloys Compd.
479
,
43
(
2009
).
16.
Y.
Cao
,
K.
Xu
,
W.
Jiang
,
T.
Droubay
,
P.
Ramuhalli
,
D.
Edwards
,
B. R.
Johnson
, and
J.
McCloy
,
J. Magn. Magn. Mater.
395
,
361
(
2015
).
17.
C.
Papusoi
,
S.
Jain
,
R.
Admana
,
B.
Ozdol
,
C.
Ophus
,
M.
Desai
, and
R.
Acharya
,
J. Phys. D Appl. Phys.
50
,
285003
(
2017
).
18.
D.
Navas
,
N.
Soriano
,
F.
Béron
,
C. T.
Sousa
,
K. R.
Pirota
,
J.
Torrejon
,
C.
Redondo
,
R.
Morales
, and
C. A.
Ross
,
Phys. Rev. B
96
,
180403(R)
(
2017
).
19.
J. E.
Davies
,
O.
Hellwig
,
E. E.
Fullerton
,
G.
Denbeaux
,
J. B.
Kortright
, and
K.
Liu
,
Phys. Rev. B
70
,
224434
(
2004
).
20.
J. E.
Davies
,
O.
Hellwig
,
E. E.
Fullerton
, and
K.
Liu
,
Phys. Rev. B
77
,
014421
(
2008
).
21.
J.
Yin
,
H.
Zhang
,
F.
Hu
,
B.
Shen
, and
L. Q.
Pan
,
J. Appl. Phys.
106
,
103901
(
2009
).
22.
J. E.
Davies
,
O.
Hellwig
,
E. E.
Fullerton
,
M.
Winklhofer
,
R. D.
Shull
, and
K.
Liu
,
Appl. Phys. Lett.
95
,
022505
(
2009
).
23.
A.
Markou
,
I.
Panagiotopoulos
,
T.
Bakas
,
P.
Postolache
,
L.
Stoleriu
, and
A.
Stancu
,
J. Appl. Phys.
112
,
123914
(
2012
).
24.
Z.
Diao
,
N.
Decorde
,
P.
Stamenov
,
K.
Rode
,
G.
Feng
, and
J. M. D.
Coey
,
J. Appl. Phys.
111
,
07B538
(
2012
).
25.
R. K.
Dumas
,
C.-P.
Li
,
I. V.
Roshchin
,
I. K.
Schuller
, and
K.
Liu
,
Phys. Rev. B
75
,
134405
(
2007
).
26.
C. R.
Pike
,
C. A.
Ross
,
R. T.
Scalettar
, and
G.
Zimanyi
,
Phys. Rev. B
71
,
134407
(
2005
).
27.
D. A.
Gilbert
,
G. T.
Zimanyi
,
R. K.
Dumas
,
M.
Winklhofer
,
A.
Gomez
,
N.
Eibagi
,
J. L.
Vicent
, and
K.
Liu
,
Sci. Rep.
4
,
4204
(
2014
).
28.
M.
Ito
,
M.
Yano
,
N.
Sakuma
,
H.
Kishimoto
,
A.
Manabe
,
T.
Shoji
,
A.
Kato
,
N. M.
Dempsey
,
D.
Givord
, and
G. T.
Zimanyi
,
AIP Adv.
6
,
056029
(
2016
).
29.
S.
Muralidhar
,
J.
Gräfe
,
Y.-C.
Chen
,
M.
Etter
,
G.
Gregori
,
S.
Ener
,
S.
Sawatzki
,
K.
Hono
,
O.
Gutfleisch
,
H.
Kronmüller
,
G.
Schütz
, and
E. J.
Goering
,
Phys. Rev. B
95
,
024413
(
2017
).
30.
J. E.
Davies
,
O.
Hellwig
,
E. E.
Fullerton
,
J. S.
Jiang
,
S. D.
Bader
,
G. T.
Zimányi
, and
K.
Liu
,
Appl. Phys. Lett.
86
,
262503
(
2005
).
31.
L.
Spinu
,
A.
Stancu
,
C.
Radu
,
F.
Li
, and
J. B.
Wiley
,
IEEE Trans. Magn.
40
,
2116
(
2004
).
32.
M.
Ciureanu
,
F.
Béron
,
P.
Ciureanu
,
R. W.
Cochrane
,
D.
Ménard
,
A.
Sklyuyev
, and
A.
Yelon
,
J. Nanosci. Nanotechnol.
8
,
5725
(
2008
).
33.
A.
Rotaru
,
J.-H.
Lim
,
D.
Lenormand
,
A.
Diaconu
,
J. B.
Wiley
,
P.
Postolache
,
A.
Stancu
, and
L.
Spinu
,
Phys. Rev. B
84
,
134431
(
2011
).
34.
M. P.
Proenca
,
C. T.
Sousa
,
J.
Ventura
,
J.
Garcia
,
M.
Vazquez
, and
J. P.
Araujo
,
J. Alloys Compd.
699
,
421
(
2017
).
35.
M.
Nica
and
A.
Stancu
,
Physica B
475
,
73
(
2015
).
36.
M. P.
Proenca
,
J.
Ventura
,
C. T.
Sousa
,
M.
Vazquez
, and
J. P.
Araujo
,
J. Phys. Condens. Matter
26
,
116004
(
2014
).
37.
A. H.
Montazer
,
A.
Ramazani
,
M.
Almasi Kashi
, and
J.
Zavašnik
,
J. Phys. D Appl. Phys.
49
,
445001
(
2016
).
38.
D.
Cimpoesu
,
I.
Dumitru
, and
A.
Stancu
,
J. Appl. Phys.
120
,
173902
(
2016
).
39.
R.
Lavin
,
J. C.
Denardin
,
J.
Escrig
,
D.
Altbir
,
A.
Cortes
, and
H.
Gomez
,
IEEE Trans. Magn.
44
(
11
),
2808
(
2008
).
40.
M. P.
Proenca
,
C. T.
Sousa
,
J.
Escrig
,
J.
Ventura
,
M.
Vazquez
, and
J. P.
Araujo
,
J. Appl. Phys.
113
,
093907
(
2013
).
41.
E. M.
Palmero
,
F.
Béron
,
C.
Bran
,
R. P.
del Real
, and
M.
Vázquez
,
Nanotechnology
27
,
435705
(
2016
).
42.
P.
Sergelius
,
J. G.
Fernandez
,
S.
Martens
,
M.
Zocher
,
T.
Böhnert
,
V. V.
Martinez
,
V.
Manuel de la Prida
,
D.
Görlitz
, and
K.
Nielsch
,
J. Phys. D Appl. Phys.
49
(
14
),
145005
(
2016
).
43.
F.
Béron
,
D.
Ménard
, and
A.
Yelon
,
J. Appl. Phys.
103
,
07D908
(
2008
).
44.
A.
Stancu
,
C.
Pike
,
L.
Stoleriu
,
P.
Postolache
, and
D.
Cimpoesu
,
J. Appl. Phys.
93
,
6620
(
2003
).
45.
A.
Muxworthy
and
W.
Williams
,
J. Appl. Phys.
97
,
063905
(
2005
).
46.
A.
Muxworthy
,
D.
Heslop
, and
W.
Williams
,
Geophys. J. Int.
158
,
888
, (
2004
).
47.
C.-I.
Dobrotă
and
A.
Stancu
,
Physica B
407
,
4676
(
2012
).
48.
C.-I.
Dobrotă
and
A.
Stancu
,
J. Phys. Cond. Mat.
25
,
035302
(
2013
).
49.
C.-I.
Dobrotă
and
A.
Stancu
,
Physica B
457
,
280
(
2015
).
50.
A.
Berger
,
B.
Lengsfield
, and
Y.
Ikeda
,
J. Appl. Phys.
99
,
08E705
(
2006
).
51.
J. M.
Martínez Huerta
,
J.
De La Torre Medina
,
L.
Piraux
, and
A.
Encinas
,
J. Appl. Phys.
111
,
083914
(
2012
).
52.
M.
Winklhofer
and
G. T.
Zimanyi
,
J. App. Phys.
99
,
08E710
(
2006
).
53.
S.
Ruta
,
O.
Hovorka
,
P.-W.
Huang
,
K.
Wang
,
G.
Ju
, and
R.
Chantrell
,
Sci. Rep.
7
,
45218
(
2017
).
54.
E.
Della Torre
,
IEEE Trans. Audio Electroacoust.
14
,
86
(
1966
).
55.
L.-P.
Carignan
,
C.
Lacroix
,
A.
Ouimet
,
M.
Ciureanu
,
A.
Yelon
, and
D.
Ménard
,
J. Appl. Phys.
102
,
023905
(
2007
).
56.
S.
Samanifar
,
M. A.
Kashi
, and
A.
Ramazani
,
Physica C
548
,
72
(
2018
).
57.
X.
Kou
,
X.
Fan
,
R. K.
Dumas
,
Q.
Lu
,
Y.
Zhang
,
H.
Zhu
,
X.
Zhang
,
K.
Liu
, and
J. Q.
Xiao
,
Adv. Mater.
23
(
11
),
1393
(
2011
).
58.
L. C. C.
Arzuza
,
R.
López-Ruiz
,
D.
Salazar-Aravena
,
M.
Knobel
,
F.
Béron
, and
K. R.
Pirota
,
J. Magn. Magn. Mater.
432
,
309
(
2017
).
59.
A.
Ramazani
,
V.
Asgari
,
A. H.
Montazer
, and
M.
Almasi Kashi
,
Curr. Appl. Phys.
15
(
7
),
819
(
2015
).
60.
V.
Vega
 et al.,
J. Nanosci. Nanotechnol.
12
(
6
),
4736
(
2012
).
61.
T. R. F.
Peixoto
and
D. R.
Cornejo
,
J. Magn. Magn. Mater.
320
(
14
),
e279
(
2008
).
62.
F.
Béron
,
L.
Clime
,
M.
Ciureanu
,
D.
Ménard
,
R. W.
Cochrane
, and
A.
Yelon
,
J. Nanosci. Nanotechnol.
8
(
6
),
2944
(
2008
).
63.
M. R. Z.
Kouhpanji
and
B. J. H.
Stadler
,
Nano Express
1
,
010017
(
2020
).
64.
R.
Skomski
,
J. P.
Liu
, and
D. J.
Sellmyer
,
Phys. Rev. B
60
(
10
),
7359
(
1999
).

Supplementary Material

You do not currently have access to this content.