This work is devoted to the characterization of plasmas produced by an intense pulsed relativistic electron beam propagating in air at atmospheric pressure. A large range of a time integrated dose is investigated [0.75 to 7.4] kGy(air) inducing electron densities from 2 × 1012 up to 1.6 × 1014 cm−3. The air plasmas are analyzed by two complementary diagnostics: microwave absorption and optical emission spectroscopy, to deduce plasma parameters during the creation and relaxation phases, respectively. A reduced air kinetics model is used to calculate transmission measurements during the electron beam pulse and to infer electric conductivities, which are compared to the results of three-dimensional Maxwell calculations. Optical emission spectra are measured and compared to calculated ones, giving rotational and vibrational temperatures during the relaxation phase of the plasma. These plasma characterizations may be used to model non-equilibrium atmospheric air plasma chemistry in the framework of, for instance, streamer dynamics as well as corona or dielectric barrier discharges.

1.
Non-Equilibrium Air Plasmas at Atmospheric Pressure
, edited by
K. H.
Becker
,
U.
Kogelschaftz
,
K. H.
Schonenbach
, and
R. J.
Barker
(
Institute of Physics
,
2005
).
2.
A.
Mai-Prochnowa
,
A. B.
Murphy
,
K. M.
McLean
,
M. G.
Kong
, and
K. K.
Ostrikov
,
Int. J. Antimicrob. Agents
43
,
508
(
2014
).
3.
N.
Merbahi
,
J.
Chauvin
,
F.
Judée
,
P.
Vicendo
, and
M.
Yousfi
,
Clin. Plasma Med.
9
,
40
(
2018
).
4.
A.
Dubuc
,
P.
Monsarrat
,
S.
Laurencin-Dalicieux
,
F.
Virard
,
J. P.
Sarrette
,
N.
Merbahi
, and
S.
Cousty
,
Ther. Adv. Med. Oncol.
10
,
1
12
(
2018
).
5.
I. A.
Kossyi
,
A.
Yu Kostinsky
,
A. A.
Matveyev
, and
V. P.
Silakov
,
Plasma Sources Sci. Technol.
1
,
207
220
(
1992
).
6.
D. D.
Sentman
,
H. C.
Stenbaek-Nielsen
,
M. G.
McHarg
, and
J. S.
Morrill
,
J. Geophys. Res.
113
,
D11112,
(
2008
).
7.
M.
Maulois
,
M.
Ribière
,
O.
Eichwald
,
M.
Yousfi
, and
B.
Azaïs
,
Phys. Plasma
23
,
043501
(
2016
).
8.
M.
Meziane
,
O.
Eichwald
,
J. P.
Sarrette
,
O.
Ducasse
,
M.
Yousfi
, and
F.
Marchal
,
J. Appl. Phys.
113
,
153302
(
2013
).
9.
N. A.
Kelley
,
D. M.
Smith
,
J. R.
Dwyer
,
M.
Splitt
,
S.
Lazarus
,
F.
Martinez-McKinney
,
B.
Hazelton
,
B.
Grefenstette
,
A.
Lowell
, and
H. K.
Rassoul
,
Nat. Commun.
6
,
7845
(
2015
).
10.
A. V.
Gurevich
,
G. M.
Milikh
, and
R.
Roussel-Dupré
,
Phys. Lett. A
165
,
463
(
1992
).
11.
R.
Roussel
and
A. V.
Gurevich
,
J. Geophys. Res.
101
,
2297,
(
1996
).
12.
J. M.
Plewa
,
O.
Eichwald
,
O.
Ducasse
,
P.
Dessante
,
C.
Jacobs
,
N.
Renon
, and
M.
Yousfi
,
J. Phys. D Appl. Phys.
51
,
095206
(
2018
).
13.
R.
Morrow
and
J. J.
Lowke
,
J. Phys. D Appl. Phys.
30
,
614
(
1997
).
14.
A. V.
Phelps
and
B. M.
Jelenkovic
,
Phys. Rev. A
36
,
5327
(
1987
).
15.
V. D.
Stojanović
,
B. M.
Jelenković
, and
Z.
Lj. Petrović
,
J. Appl. Phys.
81
,
1601
(
1997
).
16.
M.
Ribière
,
T.
Gouriou
,
O.
Eichwald
,
M.
Yousfi
, and
B.
Azaïs
,
J. Appl. Phys.
125
,
083303
(
2019
).
17.
M.
Ribière
,
S.
Demarquay
,
M.
Maulois
,
R.
Maisonny
,
T.
d’Almeida
,
M.
Toury
,
B.
Crabos
,
C.
Gonzalez
,
A.
Garrigues
,
C.
Delbos
, and
B.
Azaïs
,
IEEE Trans. Nucl. Sci.
62
,
1383
(
2015
).
18.
M.
Maulois
,
M.
Ribière
,
O.
Eichwald
,
M.
Yousfi
,
R.
Pouzalgues
,
A.
Garrigues
,
C.
Delbos
, and
B.
Azaïs
,
Phys. Plasma
23
,
102117
(
2016
).
19.
M.
Maulois
,
M.
Ribière
,
O.
Eichwald
,
M.
Yousfi
,
R.
Pouzalgues
,
A.
Garrigues
,
C.
Delbos
, and
B.
Azaïs
,
J. Appl. Phys.
120
,
123302
(
2016
).
20.
M.
Ribière
,
F.
de. Gaufridy. de. Dortan
,
R.
Delaunay
,
D.
Aubert
,
T.
Gouriou
,
R.
Maisonny
, and
T.
d’Almeida
,
Trans. Nucl. Sci.
67
,
1722
(
2020
).
21.
C. J.
Werner
, MCNP User Manual—Code Version 6.2, LA-UR-1729981 (
2017
).
23.
Y.
Itikawa
,
J. Phys. Chem. Ref. Data
35
,
31
(
2006
).
24.
Y.
Itikawa
,
J. Phys. Chem. Ref. Data
38
,
1
(
2009
).
25.
Y.
Itikawa
and
N.
Mason
,
J. Phys. Chem. Ref. Data
34
,
1
(
2005
).
26.
M.
Yousfi
and
M. D.
Benabdessadok
,
J. Appl. Phys.
80
,
6619
(
1996
).
27.
M. A.
Heald
and
C. B.
Wharton
,
Wharton: Plasma Diagnostics with Microwaves
(
Wiley
,
New York
,
1965
).
28.
O.
Cessenat
, e-print arXiv:1301.4539 (2013).
29.
M.
Ribière
,
O.
Cessenat
,
T.
d'Almeida
,
F.
de Gaufridy de Dortan
,
M.
Maulois
,
C.
Delbos
,
A.
Garrigues
, and
B.
Azaïs
,
Phys. Plasmas
23
,
032105
(
2016
).
30.
M.
Ribière
,
T.
d'Almeida
,
O.
Cessenat
,
M.
Maulois
,
R.
Pouzalgues
,
B.
Crabos
,
C.
Delbos
,
A.
Garrigues
, and
B.
Azaïs
,
Phys. Plasmas
23
,
122106
(
2016
).
31.
A.
Taflove
,
Computational Electrodynamics: The Finite-Difference Time-Domain Method
(
Artech House Publishers
,
1995
).
32.
K. S.
Yee
,
IEEE Trans. Antennas Propag.
14
(
3
),
302
(
1966
).
33.
C. O.
Laux
, in
Radiation and non-Equilibrium Collisional-Radiative Models. Special Course on Physico-Chemical Modelling of High Enthalpy and Plasma Flows
, edited by
T. M. D.
Fletcher
and
S.
Sharma
(
Von Karman Institute
,
Rhode-Saint-Genèse
, 2000).
34.
F.
Arqueros
,
F.
Blanco
,
A.
Castellanos
,
M.
Ortiz
, and
J.
Rosado
,
Astropart. Phys.
26
,
231
(
2006
).
35.
Z. L.
Petrović
,
V.
Stojanović
, and
Z.
Nikitović
,
Plasma Sources Sci. Technol.
18
,
034017
(
2009
).
You do not currently have access to this content.