We introduce our design, simulation, and fabrication for cm-long waveguides and micro-ring resonators based on fully-etched thin-film lithium niobate on insulator (LNOI) incorporated with rare earth ions. We implant ytterbium ions (Yb3+) into the crystalline host and study their optical properties at 4 K temperature. We measure an intrinsic optical quality factor of higher than 2×106 after postimplantation annealing. We characterize the photoluminescence spectrum, lifetime, and absorption of Yb3+ ions. Incorporation of rare earth ions into LNOI as a crystalline and nonlinear photonic element may enable the development of multi-functional quantum photonic devices capable of generating, transducing, manipulating, and storing of quantum optical information.

1.
R.
Cone
,
C.
Thiel
,
Y.
Sun
,
T.
Böttger
, and
R.
Macfarlane
, “Rare-earth-doped materials with application to optical signal processing, quantum information science, and medical imaging technology,” in Advances in Photonics of Quantum Computing, Memory, and Communication V (International Society for Optics and Photonics, 2012), Vol. 8272, p. 82720E.
2.
T. J.
Kane
and
R. L.
Byer
, “
Monolithic, unidirectional single-mode Nd:YAG ring laser
,”
Opt. Lett.
10
,
65
67
(
1985
).
3.
M.
Zhong
,
M. P.
Hedges
,
R. L.
Ahlefeldt
,
J. G.
Bartholomew
,
S. E.
Beavan
,
S. M.
Wittig
,
J. J.
Longdell
, and
M. J.
Sellars
, “
Optically addressable nuclear spins in a solid with a six-hour coherence time
,”
Nature
517
,
177
180
(
2015
).
4.
R.
Macfarlane
and
R.
Shelby
, “Coherent transient and holeburning spectroscopy of rare earth ions in solids,” in Modern Problems in Condensed Matter Sciences (Elsevier, 1987), Vol. 21, pp. 51–184.
5.
T.
Zhong
,
J. M.
Kindem
,
E.
Miyazono
, and
A.
Faraon
, “
Nanophotonic coherent light–matter interfaces based on rare-earth-doped crystals
,”
Nat. Commun.
6
,
8206
(
2015
).
6.
A.
Dibos
,
M.
Raha
,
C.
Phenicie
, and
J. D.
Thompson
, “
Atomic source of single photons in the telecom band
,”
Phys. Rev. Lett.
120
,
243601
(
2018
).
7.
J. M.
Kindem
,
A.
Ruskuc
,
J. G.
Bartholomew
,
J.
Rochman
,
Y. Q.
Huan
, and
A.
Faraon
, “
Control and single-shot readout of an ion embedded in a nanophotonic cavity
,”
Nature
580
,
201
204
(
2020
).
8.
M.
Raha
,
S.
Chen
,
C. M.
Phenicie
,
S.
Ourari
,
A. M.
Dibos
, and
J. D.
Thompson
, “
Optical quantum nondemolition measurement of a single rare earth ion qubit
,”
Nat. Commun.
11
,
1605
(
2020
).
9.
J. G.
Bartholomew
,
J.
Rochman
,
T.
Xie
,
J. M.
Kindem
,
A.
Ruskuc
,
I.
Craiciu
,
M.
Lei
, and
A.
Faraon
, “
On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4
,”
Nat. Commun.
11
,
3266
(
2020
).
10.
D.
Ding
,
L. M.
Pereira
,
J. F.
Bauters
,
M. J.
Heck
,
G.
Welker
,
A.
Vantomme
,
J. E.
Bowers
,
M. J.
de Dood
, and
D.
Bouwmeester
, “
Multidimensional Purcell effect in an ytterbium-doped ring resonator
,”
Nat. Photonics
10
,
385
(
2016
).
11.
A.
Nandi
,
X.
Jiang
,
D.
Pak
,
D.
Perry
,
K.
Han
,
E. S.
Bielejec
,
Y.
Xuan
, and
M.
Hosseini
, “
Controlling light emission by engineering atomic geometries in silicon photonics
,”
Opt. Lett.
45
,
1631
1634
(
2020
).
12.
X.
Jiang
,
D.
Pak
,
A.
Nandi
,
Y.
Xuan
, and
M.
Hosseini
, “
Rare earth-implanted lithium niobate: Properties and on-chip integration
,”
Appl. Phys. Lett.
115
,
071104
(
2019
).
13.
J.
Jones
,
J.
De Sandro
,
M.
Hempstead
,
D.
Shepherd
,
A.
Large
,
A.
Tropper
, and
J.
Wilkinson
, “
Channel waveguide laser at 1 μm in Yb-indiffused LiNbO3
,”
Opt. Lett.
20
,
1477
1479
(
1995
).
14.
O.
Alibart
,
V.
D’Auria
,
M.
De Micheli
,
F.
Doutre
,
F.
Kaiser
,
L.
Labonté
,
T.
Lunghi
,
É.
Picholle
, and
S.
Tanzilli
, “
Quantum photonics at telecom wavelengths based on lithium niobate waveguides
,”
J. Opt.
18
,
104001
(
2016
).
15.
R.
Weis
and
T.
Gaylord
, “
Lithium niobate: Summary of physical properties and crystal structure
,”
Appl. Phys. A
37
,
191
203
(
1985
).
16.
K.
Sugii
,
M.
Fukuma
, and
H.
Iwasaki
, “
A study on titanium diffusion into LiNbO3 waveguides by electron probe analysis and x-ray diffraction methods
,”
J. Mater. Sci.
13
,
523
533
(
1978
).
17.
G.
Griffiths
and
R.
Esdaile
, “
Analysis of titanium diffused planar optical waveguides in lithium niobate
,”
IEEE J. Quantum Electron.
20
,
149
159
(
1984
).
18.
S.
Mailis
,
C.
Riziotis
,
I.
Wellington
,
P.
Smith
,
C.
Gawith
, and
R.
Eason
, “
Direct ultraviolet writing of channel waveguides in congruent lithium niobate single crystals
,”
Opt. Lett.
28
,
1433
1435
(
2003
).
19.
H.
Liang
,
R.
Luo
,
Y.
He
,
H.
Jiang
, and
Q.
Lin
, “
High-quality lithium niobate photonic crystal nanocavities
,”
Optica
4
,
1251
1258
(
2017
).
20.
K.
Luke
,
P.
Kharel
,
C.
Reimer
,
L.
He
,
M.
Loncar
, and
M.
Zhang
, “Wafer-scale low-loss lithium niobate photonic integrated circuits,” arXiv:2007.06498 (2020).
21.
J.
Lu
,
J. B.
Surya
,
X.
Liu
,
A. W.
Bruch
,
Z.
Gong
,
Y.
Xu
, and
H. X.
Tang
, “
Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/w
,”
Optica
6
,
1455
1460
(
2019
).
22.
L.
Shao
,
M.
Yu
,
S.
Maity
,
N.
Sinclair
,
L.
Zheng
,
C.
Chia
,
A.
Shams-Ansari
,
C.
Wang
,
M.
Zhang
,
K.
Lai
et al., “
Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators
,”
Optica
6
,
1498
1505
(
2019
).
23.
J.-Y.
Chen
,
Z.-H.
Ma
,
Y. M.
Sua
,
Z.
Li
,
C.
Tang
, and
Y.-P.
Huang
, “
Ultra-efficient frequency conversion in quasi-phase-matched lithium niobate microrings
,”
Optica
6
,
1244
1245
(
2019
).
24.
S.
Wang
,
L.
Yang
,
R.
Cheng
,
Y.
Xu
,
M.
Shen
,
R. L.
Cone
,
C. W.
Thiel
, and
H. X.
Tang
, “
Incorporation of erbium ions into thin-film lithium niobate integrated photonics
,”
Appl. Phys. Lett.
116
,
151103
(
2020
).
25.
S.
Dutta
,
E. A.
Goldschmidt
,
S.
Barik
,
U.
Saha
, and
E.
Waks
, “
Integrated photonic platform for rare-earth ions in thin film lithium niobate
,”
Nano Lett.
20
(
1
),
741
747
(
2020
).
26.
A.
Ortu
,
A.
Tiranov
,
S.
Welinski
,
F.
Fröwis
,
N.
Gisin
,
A.
Ferrier
,
P.
Goldner
, and
M.
Afzelius
, “
Simultaneous coherence enhancement of optical and microwave transitions in solid-state electronic spins
,”
Nat. Mater.
17
,
671
675
(
2018
).
27.
M.
Bahadori
,
Y.
Yang
,
L. L.
Goddard
, and
S.
Gong
, “
High performance fully etched isotropic microring resonators in thin-film lithium niobate on insulator platform
,”
Opt. Express
27
,
22025
22039
(
2019
).
28.
J.
Wang
,
Y.
Xuan
,
C.
Lee
,
B.
Niu
,
L.
Liu
,
G. N.
Liu
, and
M.
Qi
, “Low-loss and misalignment-tolerant fiber-to-chip edge coupler based on double-tip inverse tapers,” in 2016 Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2016), pp. 1–3.
29.
T.
Böttger
,
C.
Thiel
,
Y.
Sun
, and
R.
Cone
, “
Optical decoherence and spectral diffusion at 1.5 μm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er3+ concentration
,”
Phys. Rev. B
73
,
075101
(
2006
).
30.
M.
Afzelius
and
C.
Simon
, “
Impedance-matched cavity quantum memory
,”
Phys. Rev. A
82
,
022310
(
2010
).
31.
M.
Sabooni
,
Q.
Li
,
S.
Kröll
, and
L.
Rippe
, “
Efficient quantum memory using a weakly absorbing sample
,”
Phys. Rev. Lett.
110
,
133604
(
2013
).
32.
A.
Polman
, “
Erbium implanted thin film photonic materials
,”
J. Appl. Phys.
82
,
1
39
(
1997
).
33.
S.
Li
,
L.
Cai
,
Y.
Wang
,
Y.
Jiang
, and
H.
Hu
, “
Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe
,”
Opt. Express
23
,
24212
24219
(
2015
).
34.
C.
Wang
,
M.
Zhang
,
B.
Stern
,
M.
Lipson
, and
M.
Lončar
, “
Nanophotonic lithium niobate electro-optic modulators
,”
Opt. Express
26
,
1547
1555
(
2018
).
35.
K.
Furuya
,
A.
Nandi
, and
M.
Hosseini
, “
Study of atomic geometry and its effect on photon generation and storage (invited)
,”
Opt. Mater. Express
10
,
577
587
(
2020
).
You do not currently have access to this content.