Methylammonium lead iodide (CH3NH3PbI3) is one of the most attractive materials for optoelectronic applications, and it is the most typical absorber in perovskite solar cells, which are unprecedentedly successful devices in terms of power conversion efficiency. In this work, the conductivity and capacitance spectra of symmetrically contacted Au/CH3NH3PbI3/Au thick pellets are measured via impedance spectroscopy at different temperatures in dark equilibrium. The experimental conductivity spectra are parameterized and showed to follow the formalism of hopping DC conductivity in the CH3NH3PbI3 bulk. The presence of several regimes for the general Jonscher's “universal” conductivity–frequency response is highlighted and associated with the ionic–electronic overlapping conductivities. For the capacitance spectra, the general features of electrode polarization capacitance at the CH3NH3PbI3/Au interfaces are identified but yet are found to be in disagreement with some trends of classical ionic conductivity models, unable to separate different contributions. Accordingly, an analytical model is proposed accounting for hopping processes where the low frequency activation energy is split into ionic and electronic components. Our parameterizations and analytical model discern between the bulk/interface and ionic/electronic phenomena and estimate the multiple activation energies in this hybrid halide perovskite.

1.
N.-G.
Park
,
J. Phys. Chem. Lett.
4
,
2423
(
2013
).
2.
H. J.
Snaith
,
J. Phys. Chem. Lett.
4
,
3623
(
2013
).
3.
M. A.
Green
,
E. D.
Dunlop
,
J.
Hohl-Ebinger
,
M.
Yoshita
,
N.
Kopidakis
, and
A. W. Y.
Ho-Baillie
,
Prog. Photovoltaics Res. Appl.
28
,
3
(
2020
).
4.
NREL's Best Research-Cell Efficiency Chart,
2020
, https://www.nrel.gov/pv/cell-efficiency.html. Accessed 08.07.2020.
5.
J.
Bisquert
,
E. J.
Juárez-Pérez
, and
P. V.
Kamat
,
Hybrid Perovskite Solar Cells: The Genesis and Early Developments 2009-2014
(
Fundació Scito
,
Valencia
,
2017
).
6.
N. L.
Chang
,
A. W.
Yi Ho-Baillie
,
P. A.
Basore
,
T. L.
Young
,
R.
Evans
, and
R. J.
Egan
,
Prog. Photovoltaics Res. Appl.
25
,
390
(
2017
).
7.
S. A.
Veldhuis
,
P. P.
Boix
,
N.
Yantara
,
M.
Li
,
T. C.
Sum
,
N.
Mathews
, and
S. G.
Mhaisalkar
,
Adv. Mater.
28
,
6804
(
2016
).
8.
M.
Stylianakis
,
T.
Maksudov
,
A.
Panagiotopoulos
,
G.
Kakavelakis
, and
K.
Petridis
,
Materials
12
,
859
(
2019
).
9.
W.
Zhang
,
G. E.
Eperon
, and
H. J.
Snaith
,
Nat. Energy
1
,
16048
(
2016
).
10.
H.-S.
Kim
and
N.-G.
Park
,
J. Phys. Chem. Lett.
5
,
2927
(
2014
).
11.
H. J.
Snaith
,
A.
Abate
,
J. M.
Ball
,
G. E.
Eperon
,
T.
Leijtens
,
N. K.
Noel
,
S. D.
Stranks
,
J. T.-W.
Wang
,
K.
Wojciechowski
, and
W.
Zhang
,
J. Phys. Chem. Lett.
5
,
1511
(
2014
).
12.
R. M.
Hill
and
A. K.
Jonscher
,
J. Non Crystall. Solids
32
,
53
(
1979
).
13.
A.
Slonopas
,
B. J.
Foley
,
J. J.
Choi
, and
M. C.
Gupta
,
J. Appl. Phys.
119
,
074101
(
2016
).
14.
F.
Ambrosio
,
J.
Wiktor
,
F.
De Angelis
, and
A.
Pasquarello
,
Energy Environ. Sci.
11
,
101
(
2018
).
15.
D.
Yang
,
W.
Ming
,
H.
Shi
,
L.
Zhang
, and
M.-H.
Du
,
Chem. Mater.
28
,
4349
(
2016
).
16.
G.
Gregori
,
T.-Y.
Yang
,
A.
Sonocrate
,
M.
Grätzel
, and
J.
Maier
, in
Organic-Inorganic Halide Perovskites Photovoltaics: From Fundamentals to Device Architectures
, edited by
N.-G.
Park
,
M.
Grätzel
, and
T.
Miyasaka
(
Springer
,
2016
), p.
107
.
17.
Y.
Yuan
,
Q.
Wang
, and
J.
Huang
, in
Organic-Inorganic Halide Perovskite Photovoltaics: From Fundamentals to Device Architectures
, edited by
N.-G.
Park
,
M.
Grätzel
, and
T.
Miyasaka
(
Springer International Publishing
,
Cham
,
2016
), p.
137
.
18.
A.
Senocrate
,
I.
Moudrakovski
,
G. Y.
Kim
,
T.-Y.
Yang
,
G.
Gregori
,
M.
Grätzel
, and
J.
Maier
,
Angew. Chem. Int. Ed.
56
,
7755
(
2017
).
19.
C.
Li
,
A.
Guerrero
,
S.
Huettner
, and
J.
Bisquert
,
Nat. Commun.
9
,
5113
(
2018
).
20.
H.
Lee
,
S.
Gaiaschi
,
P.
Chapon
,
A.
Marronnier
,
H.
Lee
,
J.-C.
Vanel
,
D.
Tondelier
,
J.-E.
Bourée
,
Y.
Bonnassieux
, and
B.
Geffroy
,
ACS Energy Lett.
2
,
943
(
2017
).
21.
J.
Xing
,
Q.
Wang
,
Q.
Dong
,
Y.
Yuan
,
Y.
Fang
, and
J.
Huang
,
Phys. Chem. Chem. Phys.
18
,
30484
(
2016
).
22.
Y.-C.
Zhao
,
W.-K.
Zhou
,
X.
Zhou
,
K.-H.
Liu
,
D.-P.
Yu
, and
Q.
Zhao
,
Light Sci. Appl.
6
,
e16243
(
2017
).
23.
T.-Y.
Yang
,
G.
Gregori
,
N.
Pellet
,
M.
Grätzel
, and
J.
Maier
,
Angew. Chem. Int. Ed.
54
,
7905
(
2015
).
24.
M. N. F.
Hoque
,
M.
Yang
,
Z.
Li
,
N.
Islam
,
X.
Pan
,
K.
Zhu
, and
Z.
Fan
,
ACS Energy Lett.
1
,
142
(
2016
).
25.
O.
Almora
,
Y.
Zhao
,
X.
Du
,
T.
Heumueller
,
G. J.
Matt
,
G.
Garcia-Belmonte
, and
C. J.
Brabec
,
Nano Energy
75
,
104982
(
2020
).
26.
O.
Almora
,
M.
García-Batlle
, and
G.
Garcia-Belmonte
,
J. Phys. Chem. Lett.
10
,
3661
(
2019
).
27.
O.
Almora
,
A.
Guerrero
, and
G.
Garcia-Belmonte
,
Appl. Phys. Lett.
108
,
043903
(
2016
).
28.
B.
Gebremichael
,
G.
Alemu
, and
G.
Tessema Mola
,
Physica B
514
,
85
(
2017
).
29.
O.
Knop
,
R. E.
Wasylishen
,
M. A.
White
,
T. S.
Cameron
, and
M. J. M. V.
Oort
,
Can. J. Chem.
68
,
412
(
1990
).
30.
X.-K.
Ding
,
X.-M.
Li
,
X.-D.
Gao
,
S.-D.
Zhang
,
Y.-D.
Huang
, and
H.-R.
Li
,
Acta Phys. Chim. Sin.
31
,
576
(
2015
).
31.
D.
Głowienka
,
T.
Miruszewski
, and
J.
Szmytkowski
,
Solid State Sci.
82
,
19
(
2018
).
32.
M. S.
Sheikh
,
A. P.
Sakhya
,
A.
Dutta
, and
T. P.
Sinha
,
Thin Solid Films
638
,
277
(
2017
).
33.
M. S.
Sheikh
,
A. P.
Sakhya
,
P.
Sadhukhan
,
A.
Dutta
,
S.
Das
, and
T. P.
Sinha
,
Ferroelectrics
514
,
146
(
2017
).
34.
A. K.
Jonscher
,
Nature
267
,
673
(
1977
).
35.
E. F.
Hairetdinov
,
N. F.
Uvarov
,
H. K.
Patel
, and
S. W.
Martin
,
Phys. Rev. B
50
,
13259
(
1994
).
36.
J. C.
Dyre
and
T. B.
Schrøder
,
Rev. Mod. Phys.
72
,
873
(
2000
).
37.
S.
Elliott
,
Solid State Ionics
70–71
,
27
(
1994
).
38.
J. C.
Dyre
,
P.
Maass
,
B.
Roling
, and
D. L.
Sidebottom
,
Rep. Prog. Phys.
72
,
046501
(
2009
).
39.
M.
Pollak
and
G. E.
Pike
,
Phys. Rev. Lett.
28
,
1449
(
1972
).
40.
W. K.
Lee
,
J. F.
Liu
, and
A. S.
Nowick
,
Phys. Rev. Lett.
67
,
1559
(
1991
).
41.
L.
Murawski
,
R. J.
Barczyński
, and
D.
Samatowicz
,
Solid State Ionics
157
,
293
(
2003
).
42.
A.
Mansingh
,
Bull. Mater. Sci.
2
,
325
(
1980
).
43.
S. R.
Elliott
and
A. P.
Owens
,
Philos. Mag. B
60
,
777
(
1989
).
44.
O.
Almora
,
Ph.D. thesis
,
Friedrich-Alexander Universität Erlangen-Nürnberg & Universitat Jaume I,
2020
.
45.
K.
Shimakawa
, in
Encyclopedia of Materials Science and Technology
, edited by
K. H. J.
Buschow
,
R. W.
Cahn
,
M. C.
Flemings
,
B.
Ilschner
,
E. J.
Kramer
,
S.
Mahajan
, and
P.
Veyssière
(
Elsevier
,
Oxford
,
2001
), p.
3579
.
46.
J.
Caram
,
M.
García-Batlle
,
O.
Almora
,
R. D.
Arce
,
A.
Guerrero
, and
G.
Garcia-Belmonte
,
Appl. Phys. Lett.
116
,
183503
(
2020
).
47.
O.
Almora
and
G.
Garcia-Belmonte
,
Sol. Energy
189
,
103
(
2019
).
48.
P.
Lopez-Varo
,
J. A.
Jiménez-Tejada
,
M.
García-Rosell
,
S.
Ravishankar
,
G.
Garcia-Belmonte
,
J.
Bisquert
, and
O.
Almora
,
Adv. Energy Mater.
8
,
1702772
(
2018
).
49.
F.
Brivio
,
A. B.
Walker
, and
A.
Walsh
,
APL Mater.
1
,
042111
(
2013
).
50.
F.
Brivio
,
K. T.
Butler
,
A.
Walsh
, and
M.
van Schilfgaarde
,
Phys. Rev. B
89
,
155204
(
2014
).
51.
J.-S.
Park
,
S.
Choi
,
Y.
Yan
,
Y.
Yang
,
J. M.
Luther
,
S.-H.
Wei
,
P.
Parilla
, and
K.
Zhu
,
J. Phys. Chem. Lett.
6
,
4304
(
2015
).
52.
D. O.
Demchenko
,
N.
Izyumskaya
,
M.
Feneberg
,
V.
Avrutin
,
Ü.
Özgür
,
R.
Goldhahn
, and
H.
Morkoç
,
Phys. Rev. B
94
,
075206
(
2016
).
53.
M.
Sendner
,
P. K.
Nayak
,
D. A.
Egger
,
S.
Beck
,
C.
Muller
,
B.
Epding
,
W.
Kowalsky
,
L.
Kronik
,
H. J.
Snaith
,
A.
Pucci
, and
R.
Lovrincic
,
Mater. Horiz.
3
,
613
(
2016
).
54.
M.
Shirayama
,
H.
Kadowaki
,
T.
Miyadera
,
T.
Sugita
,
M.
Tamakoshi
,
M.
Kato
,
T.
Fujiseki
,
D.
Murata
,
S.
Hara
,
T. N.
Murakami
,
S.
Fujimoto
,
M.
Chikamatsu
, and
H.
Fujiwara
,
Phys. Rev. Appl.
5
,
014012
(
2016
).
55.
J.
Zhou
,
F. L.
Tang
,
H. T.
Xue
, and
F. J.
Si
,
Mater. Sci. Forum
850
,
245
(
2016
).
56.
M. A.
Pérez-Osorio
,
A.
Champagne
,
M.
Zacharias
,
G.-M.
Rignanese
, and
F.
Giustino
,
J. Phys. Chem. C
121
,
18459
(
2017
).
57.
P.
Umari
,
E.
Mosconi
, and
F.
De Angelis
,
J. Phys. Chem. Lett.
9
,
620
(
2018
).
58.
O.
Almora
,
P.
Lopez-Varo
,
K. T.
Cho
,
S.
Aghazada
,
W.
Meng
,
Y.
Hou
,
C.
Echeverría-Arrondo
,
I.
Zimmermann
,
G. J.
Matt
,
J. A.
Jiménez-Tejada
,
C. J.
Brabec
,
M. K.
Nazeeruddin
, and
G.
Garcia-Belmonte
,
Sol. Energy Mater. Sol. Cells
195
,
291
(
2019
).
59.
A.
Yang
,
M.
Bai
,
X.
Bao
,
J.
Wang
, and
W.
Zhang
,
J. Nanomed. Nanotechnol.
7
,
407
(
2016
).
60.
J. A.
Guerra
,
A.
Tejada
,
L.
Korte
,
L.
Kegelmann
,
J. A.
Töfflinger
,
S.
Albrecht
,
B.
Rech
, and
R.
Weingärtner
,
J. Appl. Phys.
121
,
173104
(
2017
).
61.
P.
Löper
,
M.
Stuckelberger
,
B.
Niesen
,
J.
Werner
,
M.
Filipič
,
S.-J.
Moon
,
J.-H.
Yum
,
M.
Topič
,
S.
De Wolf
, and
C.
Ballif
,
J. Phys. Chem. Lett.
6
,
66
(
2015
).
62.
C. G.
Bailey
,
G. M.
Piana
, and
P. G.
Lagoudakis
,
J. Phys. Chem. C
123
,
28795
(
2019
).
63.
N.
Onoda-Yamamuro
,
T.
Matsuo
, and
H.
Suga
,
J. Phys. Chem. Solids
53
,
935
(
1992
).
64.
A.
Mohanty
,
D.
Swain
,
S.
Govinda
,
T. N. G.
Row
, and
D. D.
Sarma
,
ACS Energy Lett.
4
,
2045
(
2019
).
65.
D. H.
Fabini
,
T.
Hogan
,
H. A.
Evans
,
C. C.
Stoumpos
,
M. G.
Kanatzidis
, and
R.
Seshadri
,
J. Phys. Chem. Lett.
7
,
376
(
2016
).
66.
A.
Slonopas
,
B.
Kaur
, and
P.
Norris
,
Appl. Phys. Lett.
110
,
222905
(
2017
).
67.
A.
Slonopas
,
H.
Ryan
, and
P.
Norris
,
Electrochim. Acta
307
,
334
(
2019
).
68.
J. H.
Beaumont
and
P. W. M.
Jacobs
,
J. Phys. Chem. Solids
28
,
657
(
1967
).
69.
C.
Kim
and
M.
Tomozawa
,
J. Am. Ceram. Soc.
59
,
127
(
1976
).
70.
M.
Samet
,
V.
Levchenko
,
G.
Boiteux
,
G.
Seytre
,
A.
Kallel
, and
A.
Serghei
,
J. Chem. Phys.
142
,
194703
(
2015
).
72.
B.
Cichocki
and
B. U.
Felderhof
,
J. Chem. Phys.
104
,
3013
(
1996
).
73.
B.
Cichocki
and
B. U.
Felderhof
,
J. Chem. Phys.
107
,
6390
(
1997
).
You do not currently have access to this content.