Superhard materials are of great interest in various practical applications, and an increasing number of research efforts are focused on their development. In this article, we demonstrate that machine learning can be successfully applied to searching for such materials. We construct a machine learning model using neural networks on graphs together with a recently developed physical model of hardness and fracture toughness. The model is trained using available elastic data from the Materials Project database and has good accuracy for predictions. We use this model to screen all crystal structures in the database and systematize all the promising hard or superhard materials, and find that diamond (and its polytypes) are the hardest materials in the database. Our results can be further used for the investigation of interesting materials using more accurate ab initio calculations and/or experiments.

1.
A. G.
Kvashnin
,
Z.
Allahyari
, and
A. R.
Oganov
, “
Computational discovery of hard and superhard materials
,”
J. Appl. Phys.
126
,
040901
(
2019
).
2.
A. R.
Oganov
,
C. J.
Pickard
,
Q.
Zhu
, and
R. J.
Needs
, “
Structure prediction drives materials discovery
,”
Nat. Rev. Mat.
4
,
331
348
(
2019
).
3.
A. R.
Oganov
and
C. W.
Glass
, “
Crystal structure prediction using ab initio evolutionary techniques: Principles and applications
,”
J. Chem. Phys.
124
,
244704
(
2006
).
4.
J.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
, “
Crystal structure prediction via particle-swarm optimization
,”
Phys. Rev. B
82
,
094116
(
2010
).
5.
C. J.
Pickard
and
R. J.
Needs
, “
High-pressure phases of silane
,”
Phys. Rev. Lett.
97
,
045504
(
2006
).
6.
M.
Einaga
,
M.
Sakata
,
T.
Ishikawa
,
K.
Shimizu
,
M. I.
Eremets
,
A. P.
Drozdov
,
I. A.
Troyan
,
N.
Hirao
, and
Y.
Ohishi
, “
Crystal structure of the superconducting phase of sulfur hydride
,”
Nat. Phys.
12
,
835
(
2016
).
7.
A. F.
Goncharov
,
S. S.
Lobanov
,
I.
Kruglov
,
X.-M.
Zhao
,
X.-J.
Chen
, and
A. R.
Oganov
, “
Hydrogen sulfide at high pressure: Change in stoichiometry
,”
Phys. Rev. B
93
,
174105
(
2016
).
8.
A. G.
Kvashnin
,
D. V.
Semenok
,
I. A.
Kruglov
,
I. A.
Wrona
, and
A. R.
Oganov
, “
High-temperature superconductivity in a Th-H system under pressure conditions
,”
ACS Appl. Mater. Interfaces
10
,
43809
(
2018
).
9.
D. V.
Semenok
,
A. G.
Kvashnin
,
A. G.
Ivanova
,
V.
Svitlyk
,
V. Y.
Fominski
,
A. V.
Sadakov
,
O. A.
Obolevskiy
,
V. M.
Udalov
,
I. A.
Troyan
, and
A. R.
Oganov
, “
Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties
,”
Mater. Today
33
,
36
(
2020
).
10.
F.
Peng
,
Y.
Sun
,
C. J.
Pickard
,
R. J.
Needs
,
Q.
Wu
, and
Y.
Ma
, “
Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity
,”
Phys. Rev. Lett.
119
,
107001
(
2017
).
11.
H.
Liu
,
I. I.
Naumov
,
R.
Hoffmann
,
N. W.
Ashcroft
, and
R. J.
Hemley
, “
Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure
,”
Proc. Natl. Acad. Sci. U.S.A.
114
,
6990
(
2017
).
12.
M.
Somayazulu
,
M.
Ahart
,
A. K.
Mishra
,
Z. M.
Geballe
,
M.
Baldini
,
Y.
Meng
,
V. V.
Struzhkin
, and
R. J.
Hemley
, “
Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures
,”
Phys. Rev. Lett.
122
,
027001
(
2019
).
13.
A. P.
Drozdov
,
P. P.
Kong
,
V. S.
Minkov
,
S. P.
Besedin
,
M. A.
Kuzovnikov
,
S.
Mozaffari
,
L.
Balicas
,
F. F.
Balakirev
,
D. E.
Graf
,
V. B.
Prakapenka
,
E.
Greenberg
,
D. A.
Knyazev
,
M.
Tkacz
, and
M. I.
Eremets
, “
Superconductivity at 250 K in lanthanum hydride under high pressures
,”
Nature
569
,
528
(
2019
).
14.
Y.
Ma
,
M.
Eremets
,
A. R.
Oganov
,
Y.
Xie
,
I.
Troyan
,
S.
Medvedev
,
A. O.
Lyakhov
,
M.
Valle
, and
V.
Prakapenka
, “
Transparent dense sodium
,”
Nature
458
,
182
(
2009
).
15.
X.
Dong
,
A. R.
Oganov
,
A. F.
Goncharov
,
E.
Stavrou
,
S.
Lobanov
,
G.
Saleh
,
G.-R.
Qian
,
Q.
Zhu
,
C.
Gatti
,
V. L.
Deringer
,
R.
Dronskowski
,
X.-F.
Zhou
,
V. B.
Prakapenka
,
Z.
Konôpková
,
I. A.
Popov
,
A. I.
Boldyrev
, and
H.-T.
Wang
, “
A stable compound of helium and sodium at high pressure
,”
Nat. Chem.
9
,
440
(
2017
).
16.
J.
Wang
,
K.
Hanzawa
,
H.
Hiramatsu
,
J.
Kim
,
N.
Umezawa
,
K.
Iwanaka
,
T.
Tada
, and
H.
Hosono
, “
Exploration of stable strontium phosphide-based electrides: Theoretical structure prediction and experimental validation
,”
J. Am. Chem. Soc.
139
(
44
),
15668
(
2017
).
17.
V.
Sharma
,
C.
Wang
,
R. G.
Lorenzini
,
R.
Ma
,
Q.
Zhu
,
D. W.
Sinkovits
,
G.
Pilania
,
A. R.
Oganov
,
S.
Kumar
,
G. A.
Sotzing
,
S. A.
Boggs
, and
R.
Ramprasad
, “
Rational design of all organic polymer dielectrics
,”
Nat. Commun.
5
,
4845
(
2014
).
18.
W. L.
Mao
,
H.
Mao
,
P. J.
Eng
,
T. P.
Trainor
,
M.
Newville
,
C.
Kao
,
D. L.
Heinz
,
J.
Shu
,
Y.
Meng
, and
R. J.
Hemley
, “
Bonding changes in compressed superhard graphite
,”
Science
302
,
425
(
2003
).
19.
V. V.
Brazhkin
and
V. L.
Solozhenko
, “
Myths about new ultrahard phases: Why materials that are significantly superior to diamond in elastic moduli and hardness are impossible
,”
J. Appl. Phys.
125
,
130901
(
2019
).
20.
Z.
Allahyari
and
A. R.
Oganov
, “
Coevolutionary search of materials with optimal properties in the space of all possible compounds
,”
NPJ Comp. Mat.
6
,
55
(
2020
).
21.
A. O.
Lyakhov
and
A. R.
Oganov
, “
Evolutionary search for superhard materials: Methodology and applications to forms of carbon and TiO2
,”
Phys. Rev. B
84
,
092103
(
2011
).
22.
A.
Šimůnek
and
J.
Vackář
, “
Hardness of covalent and ionic crystals: First-principle calculations
,”
Phys. Rev. Lett.
96
(
8
),
085501
(
2006
).
23.
F.
Gao
,
J.
He
,
E.
Wu
,
S.
Liu
,
D.
Yu
,
D.
Li
,
S.
Zhang
, and
Y.
Tian
, “
Hardness of covalent crystals
,”
Phys. Rev. Lett.
91
,
015502
(
2003
).
24.
K.
Li
,
X.
Wang
,
F.
Zhang
, and
D.
Xue
, “
Electronegativity identification of novel superhard materials
,”
Phys. Rev. Lett.
100
,
235504
(
2008
).
25.
X.
Chen
,
H.
Niu
,
D.
Li
, and
Y.
Li
, “
Modeling hardness of polycrystalline materials and bulk metallic glasses
,”
Intermetallics
19
,
1275
(
2011
).
26.
E.
Mazhnik
and
A. R.
Oganov
, “
A model of hardness and fracture toughness of solids
,”
J. Appl. Phys.
126
,
125109
(
2019
).
27.
W.
Ye
,
C.
Chen
,
I.-H.
Chu
,
Z.
Wang
, and
S. P.
Ong
, “
Deep neural networks for accurate predictions of crystal stability
,”
Nat. Commun.
9
,
3800
(
2018
).
28.
O.
Isayev
,
C.
Oses
,
C.
Toher
,
E.
Gossett
,
S.
Curtarolo
, and
A.
Tropsh
, “
Universal fragment descriptors for predicting properties of inorganic crystals
,”
Nat. Commun.
8
,
15679
(
2017
).
29.
S. K.
Kauwe
,
J.
Graser
,
A.
Vazquez
, and
T. D.
Sparks
, “
Machine learning prediction of heat capacity for solid inorganics
,”
Integr. Mater. Manuf. Innov.
7
,
43
(
2018
).
30.
R.
Jalem
,
K.
Kanamori
,
I.
Takeuchi
,
M.
Nakayama
,
H.
Yamasaki
, and
T.
Saito
, “
Bayesian-driven first-principles calculations for accelerating exploration of fast ion conductors for rechargeable battery application
,”
Sci. Rep.
8
,
5845
(
2018
).
31.
P.
Avery
,
X.
Wang
,
C.
Oses
,
E.
Gossett
,
D. M.
Proserpio
,
C.
Toher
,
S.
Curtarolo
, and
E.
Zurek
, “
Predicting superhard materials via a machine learning informed evolutionary structure search
,”
npj Comput. Mater.
5
,
89
(
2019
).
32.
D. M.
Teter
, “
Computational alchemy: The search for new superhard materials
,”
MRS Bull.
23
(
01
),
22
(
1998
).
33.
A. M.
Tehrani
,
A. O.
Oliynyk
,
M.
Parry
,
Z.
Rizvi
,
S.
Couper
,
F.
Lin
,
L.
Miyagi
,
T. D.
Sparks
, and
J.
Brgoch
, “
Machine learning directed search for ultraincompressible, superhard materials
,”
J. Am. Chem. Soc.
140
,
9844
(
2018
).
34.
I. A.
Kruglov
,
P. E.
Dolgirev
,
A. R.
Oganov
,
A. B.
Mazitov
,
S. N.
Pozdnyakov
,
E. A.
Mazhnik
, and
A. V.
Yanilkin
, “Machine learning interatomic potentials for global optimization and molecular dynamics simulation,” in Materials Informatics, edited by O. Isayev, A. Tropsha, and S. Curtarolo (Wiley, 2019), pp. 253–288.
35.
A. P.
Bartók
,
R.
Kondor
, and
G.
Csányi
, “
On representing chemical environments
,”
Phys. Rev. B
87
,
184115
(
2013
).
36.
A. V.
Shapeev
, “
Moment tensor potentials: A class of systematically improvable interatomic potentials
,”
Multiscale Model. Simul.
14
,
1153
(
2016
).
37.
T.
Xie
and
J. C.
Grossman
, “
Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties
,”
Phys. Rev. Lett.
120
,
145301
(
2018
).
38.
A.
Jain
,
S. P.
Ong
,
G.
Hautier
,
W.
Chen
,
W. D.
Richards
,
S.
Dacek
,
S.
Cholia
,
D.
Gunter
,
D.
Skinner
,
G.
Ceder
, and
K. A.
Persson
, “
Commentary: The materials project: A materials genome approach to accelerating materials innovation
,”
APL Mater.
1
,
011002
(
2013
).
39.
S. P.
Ong
,
W. D.
Richards
,
A.
Jain
,
G.
Hautier
,
M.
Kocher
,
S.
Cholia
,
D.
Gunter
,
V. L.
Chevrier
,
K. A.
Persson
, and
G.
Ceder
, “
Python materials genomics (pymatgen): A robust, open-source python library for materials analysis
,”
Comput. Mater. Sci.
68
,
314
(
2013
).
40.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
(
1964
).
41.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
(
1965
).
42.
R.
Hill
, “
The elastic behaviour of a crystalline aggregate
,”
Proc. Phys. Soc.
65
,
349
(
1952
).
43.
D. P.
Kingma
and
J.
Ba
, Adam: “A method for stochastic optimization,” arXiv:1412.6980 (2014).
44.
M.
de Jong
,
W.
Chen
,
R.
Notestine
,
K.
Persson
,
G.
Ceder
,
A.
Jain
,
M.
Asta
, and
A.
Gamst
, “
A statistical learning framework for materials science: Application to elastic moduli of k-nary inorganic polycrystalline compounds
,”
Sci. Rep.
6
,
34256
(
2016
).
You do not currently have access to this content.