Surface plasmon resonance (SPR) of metallic nanoparticles has become an attractive strategy for increasing the efficiency of solar water splitting. However, the metal/semiconductor junction may introduce unwanted interfaces or surface species that reduce the SPR effect as well as compromising efficient charge transport. The processes of separation, transport, and transfer of charges in metal-based plasmonic photoelectrodes are highly sensitive to the nature of the coupling between metal/semiconductor/electrolyte and a comprehensive understanding of these interfaces is still lacking. In this work, we proposed the construction of hematite photoanodes modified with gold nanoparticles (AuNPs) and aluminum oxide with different arrangements, whose optimized coupling between the interfaces led to enhanced photoelectrochemical (PEC) performance. Using a combination of finite-difference time-domain (FDTD) simulations, well-established materials synthesis and x-ray spectroscopy, electron microscopy, and PEC characterization techniques, selected architecture design strategies are evaluated. The experimental results reveal that the direct contact between semiconductors and metals coated by the dielectric leads to an improvement in localized electric field at the interface upon the formation of hot electrons, boosting the generation and separation efficiencies of electron–hole pairs. The main role of the dielectric coating, which led to an ineffective surface state passivation, is to prevent the photooxidation of AuNPs. FDTD calculations are employed to investigate the spatial distribution of the electric-field intensity around the AuNPs deposited onto the hematite surfaces and to corroborate the local field enhancement effect. The outcome of this combined experimental-theoretical study reveals that engineering plasmonic interfaces is a powerful tool to design efficient photoanodes for plasmon-driven PEC water splitting.

1.
W. M.
de Carvalho
and
F. L.
Souza
,
J. Mater. Res.
29
(
1
),
16
28
(
2014
).
2.
P.
Tang
and
J.
Arbiol
,
Nanoscale Horiz.
4
,
1256
1276
(
2019
).
3.
A. L. M.
Freitas
,
W. M.
Carvalho
, and
F. L.
Souza
,
J. Mater. Res.
30
(
23
),
1
10
(
2015
).
4.
A.
Tofanello
,
S.
Shen
,
F. L.
de Souza
, and
L.
Vayssieres
,
APL Mater.
8
,
040905
(
2020
).
5.
P.
Sharma
,
J.-W.
Jang
, and
J. S.
Lee
,
ChemCatChem
11
,
157
(
2019
).
6.
Y.
Zhang
,
S.
He
,
W.
Guo
,
Y.
Hu
,
J.
Huang
,
J. R.
Mulcahy
, and
W. D.
Wei
,
Chem. Rev.
118
(
6
),
2927
2954
(
2018
).
7.
J.
Li
,
S. K.
Cushing
,
P.
Zheng
,
F.
Meng
,
D.
Chu
, and
N.
Wu
,
Nat. Commun.
4
,
2651
(
2013
).
8.
9.
E.
Thimsen
,
F.
Le Formal
,
M.
Grätzel
, and
S. C.
Warren
,
Nano Lett.
11
(
1
),
35
43
(
2011
).
10.
X.
You
,
S.
Ramakrishna
, and
T.
Seideman
,
J. Chem. Phys.
149
,
174304
(
2018
).
11.
Q.
Zhang
,
D.
Thrithamarassery Gangadharan
,
Y.
Liu
,
Z.
Xu
,
M.
Chaker
, and
D.
Ma
,
J. Mater.
3
(
1
),
33
50
(
2017
).
12.
A.
Dutta
,
A.
Naldoni
,
F.
Malara
,
A. O.
Govorov
,
V. M.
Shalaev
, and
A.
Boltasseva
,
Faraday Discuss.
214
,
283
295
(
2019
).
13.
L.
Mascaretti
,
A.
Dutta
,
Š
Kment
,
V. M.
Shalaev
,
A.
Boltasseva
,
R.
Zbořil
, and
A.
Naldoni
,
Adv. Mater.
31
,
1805513
(
2019
).
14.
Š
Kment
,
K.
Sivula
,
A.
Naldoni
,
S. P.
Sarmah
,
H.
Kmentová
,
M.
Kulkarni
,
Y.
Rambabu
,
P.
Schmuki
, and
R.
Zbořil
,
Prog. Mater. Sci.
110
,
100632
(
2020
).
15.
M.
Valenti
,
M. P.
Jonsson
,
G.
Biskos
,
A.
Schmidt-Ott
, and
W. A.
Smith
,
J. Mater. Chem. A
4
,
17891
17912
(
2016
).
16.
L. V.
Besteiro
,
X.-T.
Kong
,
Z.
Wang
,
G.
Hartland
, and
A. O.
Govorov
,
ACS Photonics
4
(
11
),
2759
2781
(
2017
).
17.
O.
Neufeld
,
N.
Yatom
, and
M.
Caspary Toroker
,
ACS Catal.
5
(
12
),
7237
7243
(
2015
).
18.
A.
Tofanello
,
A. L. M.
Freitas
,
W. M.
Carvalho
,
T.
Salminen
,
T.
Niemi
, and
F. L.
Souza
,
J. Phys. Chem. C
124
(
11
),
6171
6179
(
2020
).
19.
Y.
Ma
,
P. S.
Shinde
,
X.
Li
, and
S.
Pan
,
ACS Omega
4
(
17
),
17257
17268
(
2019
).
20.
M.
Haro
,
R.
Abargues
,
I.
Herraiz-Cardona
,
J.
Martínez-Pastor
, and
S.
Giménez
,
Electrochim. Acta
144
(
20
),
64
70
(
2014
).
21.
T.
Tatsuma
,
H.
Nishi
, and
T.
Ishida
,
Chem. Sci.
8
,
3325
3337
(
2017
).
22.
P.
Zhang
,
T.
Wang
, and
J.
Gong
,
Adv. Mater.
27
,
5328
5342
(
2015
).
23.
S. K.
Cushing
and
N.
Wu
,
J. Phys. Chem. Lett.
7
(
4
),
666
675
(
2016
).
24.
Z.
Zheng
,
W.
Xie
,
B.
Huang
, and
Y.
Dai
,
Chem. Eur. J.
24
,
18322
(
2018
).
25.
T. S.
Atabaev
,
Front. Mater. Sci.
12
,
207
213
(
2018
).
26.
J.
Wang
,
S.
Pan
,
M.
Chen
, and
D. A.
Dixon
,
J. Phys. Chem. C
117
(
42
),
22060
22068
(
2013
).
27.
D. M.
Schaadt
,
B.
Feng
, and
E. T.
Yu
,
Appl. Phys. Lett.
86
,
063106
(
2005
).
28.
L.
Wang
,
H.
Hu
,
N. T.
Nguyen
,
Y.
Zhang
,
P.
Schmuki
, and
Y.
Bi
,
Nano Energy
35
,
171
178
(
2017
).
29.
J.
Li
,
S. K.
Cushing
,
D.
Chu
,
P.
Zheng
,
J.
Bright
,
C.
Castle
,
A.
Manivannan
, and
N.
Wu
,
J. Mater. Res.
1
,
1
8
(
2016
).
30.
Y.
Fu
,
C.-L.
Dong
,
W.
Zhou
,
Y.-R.
Lu
,
Y.-C.
Huang
,
Y.
Liu
,
P.
Guo
,
L.
Zhao
,
W.-C.
Chou
, and
S.
Shen
,
Appl. Catal. B Environ.
260
,
118206
(
2020
).
31.
C.
Li
,
P.
Wang
,
H.
Li
,
M.
Wang
,
J.
Zhang
,
G.
Qi
, and
Y.
Jin
,
Nanoscale
10
,
14290
14297
(
2018
).
32.
C.
Jia
,
X.
Li
,
N.
Xin
,
Y.
Gong
,
J.
Guan
,
L.
Meng
,
S.
Meng
, and
X.
Guo
,
Adv. Energy Mater.
6
,
1600431
(
2016
).
33.
W.
Mönch
,
J. Appl. Phys.
111
,
073706
(
2012
).
34.
I. A.
Digdaya
,
G. W. P.
Adhyaksa
,
B. J.
Trześniewski
,
E. C.
Garnett
, and
W. A.
Smith
,
Nat. Commun.
8
,
15968
(
2017
).
35.
T.
Zhu
and
M. N.
Chong
,
Nano Energy
12
,
347
373
(
2015
).
36.
D. B.
Ingram
,
P.
Christopher
,
J. L.
Bauer
, and
S.
Linic
,
ACS Catal.
1
(
10
),
1441
1447
(
2011
).
37.
M.
Wang
,
M.
Ye
,
J.
Iocozzia
,
C.
Lin
, and
Z.
Lin
,
Adv. Sci.
3
(
6
),
1600024
(
2016
).
38.
T. G. U.
Ghobadi
,
A.
Ghobadi
,
E.
Ozbay
, and
F.
Karadas
,
ChemPhotoChem
2
,
161
(
2018
).
39.
N. C.
Brandt
,
E. L.
Keller
, and
R. R.
Frontiera
,
J. Phys. Chem. Lett.
7
(
16
),
3179
3185
(
2016
).
40.
Z.
Xu
,
Y.
Lin
,
M.
Yin
,
H.
Zhang
,
C.
Cheng
,
L.
Lu
,
X.
Xue
,
H. J.
Fan
,
X.
Chen
, and
D.
Li
,
Adv. Mater. Interfaces
2
,
1500169
(
2015
).
41.
Y.
Liu
,
Z.
Xu
,
M.
Yin
,
H.
Fan
,
W.
Cheng
,
L.
Lu
,
Y.
Song
,
J.
Ma
, and
X.
Zhu
,
Nanoscale Res. Lett.
10
,
374
(
2015
).
42.
L.
Vayssieres
,
N.
Beermann
,
S.-E.
Lindquist
, and
A.
Hagfeldt
,
Chem. Mater.
13
(
2
),
233
235
(
2001
).
43.
N. M.
Ito
,
W. M.
Carvalho
, Jr.
,
D. N. F.
Muche
,
R. H. R.
Castro
,
G. M.
Dalpian
, and
F. L.
Souza
,
Phys. Chem. Chem. Phys.
19
,
25025
25032
(
2017
).
44.
L. C. C.
Ferraz
,
W. M.
Carvalho
,
D.
Criado
, and
F. L.
Souza
,
ACS Appl. Mater. Interfaces
4
,
5515
5523
(
2012
).
45.
V. A. N.
Carvalho
,
R. A. S.
Luz
,
B. H.
Lima
,
F. N.
Crespilho
,
E. R.
Leite
, and
F. L.
Souza
,
J. Power Sources
205
,
525
529
(
2012
).
46.
Y.
Fu
,
C.-L.
Dong
,
Z.
Zhou
,
W.-Y.
Lee
,
J.
Chen
,
P.
Guo
,
L.
Zhao
, and
S.
Shen
,
Phys. Chem. Chem. Phys.
18
,
3846
3853
(
2016
).
47.
P. B.
Johnson
and
R. W.
Christy
,
Phys. Rev. B
6
,
4370
(
1972
).
48.
I.
Iatsunskyi
,
M.
Kempiński
,
M.
Jancelewicz
,
K.
Załęski
,
S.
Jurga
, and
V.
Smyntyna
,
Vacuum
113
,
52
58
(
2015
).
49.
F.
Lei
,
H.
Liu
,
J.
Yu
,
Z.
Tang
,
J.
Xie
,
P.
Hao
,
G.
Cui
, and
B.
Tang
,
Phys. Chem. Chem. Phys.
21
,
1478
1483
(
2019
).
50.
H.-X.
Zhang
,
Y.
Li
,
M.-Y.
Li
,
H.
Zhang
, and
J.
Zhang
,
Nanoscale
10
,
2236
2241
(
2018
).
51.
Z.
Xu
,
Z.
Fan
,
Z.
Shi
,
M.
Li
,
J.
Feng
,
L.
Pei
,
C.
Zhou
,
J.
Zhou
,
L.
Yang
,
W.
Li
,
G.
Xu
,
S.
Yan
, and
Z.
Zou
,
ChemSusChem
11
,
237
244
(
2018
).
52.
T.
Hisatomi
,
F.
Le Formal
,
M.
Cornuz
,
J.
Brillet
,
N.
Tétreault
,
K.
Sivula
, and
M.
Grätzel
,
Energy Environ. Sci.
4
,
2512
2515
(
2011
).
53.
T.
Tatsuma
and
H.
Nishi
,
Nanoscale Horiz.
5
,
597
606
(
2020
).
54.
Y.
Liu
,
X.
Yan
,
Z.
Kang
,
Y.
Li
,
Y.
Shen
,
Y.
Sun
,
L.
Wang
, and
Y.
Zhang
,
Sci. Rep.
6
,
29907
(
2016
).
55.
O.
Zandi
and
T. W.
Hamann
,
Phys. Chem. Chem. Phys.
17
,
22485
22503
(
2015
).
56.
S. M.
Thalluri
,
L.
Bai
,
C.
Lv
,
Z.
Huang
,
X.
Hu
, and
L.
Liu
,
Adv. Sci.
7
,
1902102
(
2020
).
57.
F.
Meng
,
S. K.
Cushing
,
J.
Li
,
S.
Hao
, and
N.
Wu
,
ACS Catal.
5
(
3
),
1949
1955
(
2015
).
58.
Y.-C.
Pu
,
G.
Wang
,
K.-D.
Chang
,
Y.
Ling
,
Y.-K.
Lin
,
B. C.
Fitzmorris
,
C.-M.
Liu
,
X.
Lu
,
Y.
Tong
,
J. Z.
Zhang
,
Y.-J.
Hsu
, and
Y.
Li
,
Nano Lett.
13
(
8
),
3817
3823
(
2013
).
You do not currently have access to this content.