The equilibrium shape of nanoparticles is investigated to elucidate the various core–shell morphologies observed in a bimetallic system associating two immiscible metals, iron and gold, that crystallize in the bcc and fcc lattices, respectively. Fe–Au core–shell nanoparticles present a crystalline Fe core embedded in a polycrystalline Au shell, with core and shell morphologies both depending on the Au/Fe volume ratio. A model is proposed to calculate the energy of these nanoparticles as a function of the Fe volume, Au/Fe volume ratio, and the core and shell shape, using the density functional theory-computed energy densities of the metal surfaces and of the two possible Au/Fe interfaces. Three driving forces leading to equilibrium shapes were identified: the strong adhesion of Au on Fe, the minimization of the Au/Fe interface energy that promotes one of the two possible interface types, and the Au surface energy minimization that promotes a 2D–3D Stranski–Krastanov-like transition of the shell. For a low Au/Fe volume ratio, the wetting is the dominant driving force and leads to the same polyhedral shape for the core and the shell, with an octagonal section. For a large Au/Fe ratio, the surface and interface energy minimizations can act independently to form an almost cube-shaped Fe core surrounded by six Au pyramids. The experimental nanoparticle shapes are well reproduced by the model, for both low and large Au/Fe volume ratios.

1.
R.
Ferrando
,
J.
Jellinek
, and
R. L.
Johnston
,
Chem. Rev.
108
,
845
(
2008
).
2.
D.
Ferrer
,
A.
Torres-Castro
,
X.
Gao
,
S.
Sepulveda-Guzman
,
U.
Ortiz-Mendez
, and
M.
Jose-Yacaman
,
Nano Lett.
7
,
1701
(
2007
).
3.
L.
Piccolo
,
Z. Y.
Li
,
I.
Demiroglu
,
F.
Moyon
,
Z.
Konuspayeva
,
G.
Berhault
,
P.
Afanasiev
,
W.
Lefebvre
,
J.
Yuan
, and
R. L.
Johnston
,
Sci. Rep.
6
,
35226
(
2016
).
4.
P.
Chen
,
K.
Murugappan
, and
M. R.
Castell
,
Phys. Chem. Chem. Phys.
22
,
4416
(
2020
).
5.
D.
Bochicchio
and
R.
Ferrando
,
Phys. Rev. B
87
,
165435
(
2013
).
6.
C.
Langlois
,
Z. L.
Li
,
J.
Yuan
,
D.
Alloyeau
,
J.
Nelayah
,
D.
Bochicchio
,
R.
Ferrando
, and
C.
Ricolleau
,
Nanoscale
4
,
3381
(
2012
).
7.
P.
Benzo
,
S.
Combettes
,
B.
Pecassou
,
N.
Combe
,
M.
Benoit
,
M.
Respaud
, and
M. J.
Casanove
,
Phys. Rev. Mater.
3
,
096001
(
2019
).
8.
A.
Ponchet
,
L.
Pedesseau
,
A.
Le Corre
,
C.
Cornet
, and
N.
Bertru
,
Appl. Phys. Lett.
114
,
173102
(
2019
).
9.
C.
Langlois
,
P.
Benzo
,
R.
Arenal
,
M.
Benoit
,
J.
Nicolai
,
N.
Combe
,
A.
Ponchet
, and
M. J.
Casanove
,
Nano Lett.
15
,
5075
(
2015
).
10.
M.
Kamp
,
A.
Tymoczko
,
U.
Schürmann
,
J.
Jakobi
,
C.
Rehbock
,
K.
Rätzke
,
S.
Barcikowski
, and
L.
Kienle
,
Cryst. Growth Des.
18
,
5434
(
2018
).
11.
Y.-H.
Xu
and
J.-P.
Wang
,
Appl. Phys. Lett.
91
,
233107
(
2007
).
12.
H.
Okamoto
,
T, B.
Massalski
,
L. J.
Swartzendruber
, and
P. A.
Beck
,
Bull. Alloy Phase Diagrams
5
,
592
(
1984
).
13.
E.
Bauer
and
J. H.
van der Merwe
,
Phys. Rev. B
33
,
3657
(
1986
).
14.
H. F.
Jurca
,
A.
Damian
,
C.
Gougaud
,
D.
Thiaudière
,
R.
Cortès
,
F.
Maroun
, and
P.
Allongue
,
J. Phys. Chem. C
120
,
16080
(
2016
).
15.
J.
Wang
and
S.-Q.
Wang
,
Surf. Sci.
630
,
216
(
2014
).
16.
L.
Vitos
,
A.
Ruban
,
H.
Skriver
, and
J.
Kollár
,
Surf. Sci.
411
,
186
(
1998
).
17.
18.
R.
Tran
,
Z.
Xu
,
B.
Radhakrishnan
 et al.,
Sci. Data
3
,
160080
(
2016
).
19.
M.
Nicholas
,
J. Mater. Sci.
3
,
571
(
1968
).
20.
M.
Benoit
,
C.
Langlois
,
N.
Combe
,
H.
Tang
, and
M.-J.
Casanove
,
Phys. Rev. B
86
,
075460
(
2012
).
21.
M.
Benoit
,
N.
Combe
,
A.
Ponchet
,
J.
Morillo
, and
M.-J.
Casanove
,
Phys. Rev. B
90
,
165437
(
2014
).
22.
S.
Giorgio
,
C.
Chapon
,
C. R.
Henry
,
G.
Nihoul
, and
J. M.
Penisson
,
Ultramiscrocopy
38
,
1
(
1991
).
23.
W. R.
Miller
and
W. A.
Tyson
,
Surf. Sci.
62
,
267
(
1977
).
24.
S.
Lu
,
Q. M.
Hu
,
M. P. J.
Punkkinen
,
B.
Johansson
, and
L.
Vitos
,
Phys. Rev. B
87
,
224104
(
2013
).
25.
D.
Amram
and
E.
Rabkin
,
ACS Nano
8
,
10687
(
2014
).
26.
P.
Müller
and
R.
Kern
,
Appl. Surf. Sci.
102
,
6
(
1996
).
27.
J.
Tersoff
and
F. K.
LeGoues
,
Phys. Rev. Lett.
72
,
3570
(
1994
).
28.
A.
Ponchet
,
D.
Lacombe
,
L.
Durand
,
D.
Alquier
, and
J.-M.
Cardonna
,
Appl. Phys. Lett.
72
,
2984
(
1998
).
29.
Note that Fig. 5 is presented regardless the NP size. However, this is valid only when the Au thickness is larger than the critical thickness defined in Sec. II E 2 for the full wetting condition. For instance, for the 175.6 nm3VFe discussed in Sec. IV, and RFe around 1, Fig. 5 is valid for VAu/VFe larger than 0.47 if the critical thickness is two MLs.
30.
There, however, exists a particular volume ratio where the 3D wetting factor ΦAu/(3D)Fe is identical whatever RFe and its hierarchy as a function of RFe undergoes an inversion. It is given from (15) and (23) by VAu/VFe=[1+(Φ(001)Au/(001)FeΦ(111)Au/(110)Fe)/(γ111Auγ001Au)]3/21 and is 3.4 here. For lower volume ratios, the larger the predefined RFe of the core [i.e., the larger the (001)Au/(001)Fe interface area], the larger the energetic benefit to form a shell homothetic to the core as shown by the smaller ΦAu/(3D)Fe. This is because of the hierarchy of the 2D wetting factors (Φ(111)Au/(110)Fe>Φ(001)Au/(001)Fe). As the volume ratio increases, the surface term in the shell formation energyΔF becomes dominant. As γ111Au<γ001Au, the cost to form a shell becomes larger (ΦAu/(3D)Fe becomes larger) with large RFe than with small RFe. If (Φ(001)Au/(001)FeΦ(111)Au/(110)Fe) and (γ111Auγ001Au) had the opposite sign, this inversion would not exist.
You do not currently have access to this content.