Rare earth ions hosted in solids are good candidates for quantum technologies due to their chemical stability and optical and spin transitions exhibiting long coherence lifetimes. While bulk oxide crystals are usually the preferred host material, the development of a scalable silicon-compatible thin film platform would be desirable. In this paper, we report on the growth of Y2(1−x)Eu2xO3 thin films on silicon in the full range of Eu3+ concentration by direct liquid injection chemical vapor deposition (CVD). Our sub-micrometer polycrystalline films with a strong-(111) texture were grown for all compositions into the bixbyite cubic phase. The variation of growth rates with temperature and flow indicated that deposition occurred through a mass-transport controlled regime. Optical assessment of the Eu-doped thin films showed inhomogeneous linewidths as narrow as 50 GHz and fluorescence lifetimes of 1 ms for the lowest concentrations. Finally, a spectral hole was successfully burned in a 200 nm-thin film with a 2% Eu doping leading to a homogeneous linewidth of 11 MHz. These values are still below those reported for bulk single crystals indicating that additional decoherence mechanisms exist in such nanometric films, which might be alleviated by further improvement of the crystalline quality. Nevertheless, these results pave the way to the use of CVD-grown Eu:Y2O3 thin films as a platform for integrated quantum devices.

1.
A.
Acín
,
I.
Bloch
,
H.
Buhrman
,
T.
Calarco
,
C.
Eichler
,
J.
Eisert
,
D.
Esteve
,
N.
Gisin
,
S. J.
Glaser
,
F.
Jelezko
,
S.
Kuhr
,
M.
Lewenstein
,
M. F.
Riedel
,
P. O.
Schmidt
,
R.
Thew
,
A.
Wallraff
,
I.
Walmsley
, and
F. K.
Wilhelm
,
New J. Phys.
20
,
080201
(
2018
).
2.
R. W.
Equall
,
Y.
Sun
,
R. L.
Cone
, and
R. M.
Macfarlane
,
Phys. Rev. Lett.
72
,
2179
(
1994
).
3.
P.
Goldner
,
A.
Ferrier
, and
O.
Guillot-Noel
, in
Handbook on Physics and Chemistry of Rare-Earth Materials
, edited by
J.-C.
Bunzli
and
V.
Pecharsky
(Elsevier,
2015
), pp.
1
78
.
4.
A.
Arcangeli
,
M.
Lovrić
,
B.
Tumino
,
A.
Ferrier
, and
P.
Goldner
,
Phys. Rev. B
89
,
184305
(
2014
).
5.
M.
Zhong
,
M. P.
Hedges
,
R. L.
Ahlefeldt
,
J. G.
Bartholomew
,
S. E.
Beavan
,
S. M.
Wittig
,
J. J.
Longdell
, and
M. J.
Sellars
,
Nature
517
,
177
(
2015
).
6.
P.
Jobez
,
C.
Laplane
,
N.
Timoney
,
N.
Gisin
,
A.
Ferrier
,
P.
Goldner
, and
M.
Afzelius
,
Phys. Rev. Lett.
114
,
230502
(
2015
).
7.
F.
Bussières
,
C.
Clausen
,
A.
Tiranov
,
B.
Korzh
,
V. B.
Verma
,
S. W.
Nam
,
F.
Marsili
,
A.
Ferrier
,
P.
Goldner
,
H.
Herrmann
,
C.
Silberhorn
,
W.
Sohler
,
M.
Afzelius
, and
N.
Gisin
,
Nat. Photonics
8
,
775
(
2014
).
8.
N.
Timoney
,
B.
Lauritzen
,
I.
Usmani
,
M.
Afzelius
, and
N.
Gisin
,
J. Phys. B At. Mol. Opt. Phys.
45
,
124001
(
2012
).
9.
E. Z.
Cruzeiro
,
A.
Tiranov
,
I.
Usmani
,
C.
Laplane
,
J.
Lavoie
,
A.
Ferrier
,
P.
Goldner
,
N.
Gisin
, and
M.
Afzelius
,
Phys. Rev. B
95
,
205119
(
2017
).
10.
B.
Casabone
,
J.
Benedikter
,
T.
Hümmer
,
F.
Oehl
,
K. O.
de Lima
,
T. W.
Hänsch
,
A.
Ferrier
,
P.
Goldner
,
H.
de Riedmatten
, and
D.
Hunger
,
New J. Phys.
20
,
095006
(
2018
).
11.
R.
Kolesov
,
K.
Xia
,
R.
Reuter
,
R.
Stöhr
,
A.
Zappe
,
J.
Meijer
,
P. R.
Hemmer
, and
J.
Wrachtrup
,
Nat. Commun.
3
,
1029
(
2012
).
12.
T.
Zhong
,
J. M.
Kindem
,
J. G.
Bartholomew
,
J.
Rochman
,
I.
Craiciu
,
V.
Verma
,
S. W.
Nam
,
F.
Marsili
,
M. D.
Shaw
,
A. D.
Beyer
, and
A.
Faraon
,
Phys. Rev. Lett.
121
,
183603
(
2018
).
13.
T.
Zhong
and
P.
Goldner
,
Nanophotonics
8
,
2003
(
2019
).
14.
S.
Liu
,
D.
Serrano
,
A.
Fossati
,
A.
Tallaire
,
A.
Ferrier
, and
P.
Goldner
,
RSC Adv.
8
,
37098
(
2018
).
15.
J. G.
Bartholomew
,
K.
de Oliveira Lima
,
A.
Ferrier
, and
P.
Goldner
,
Nano Lett.
17
,
778
(
2017
).
16.
D.
Serrano
,
J.
Karlsson
,
A.
Fossati
,
A.
Ferrier
, and
P.
Goldner
,
Nat. Commun.
9
,
2127
(
2018
).
17.
H. J.
Osten
,
A.
Laha
,
M.
Czernohorsky
,
E.
Bugiel
,
R.
Dargis
, and
A.
Fissel
,
Phys. Status Solidi A
205
,
695
(
2008
).
18.
M. K.
Singh
,
A.
Prakash
,
G.
Wolfowicz
,
J.
Wen
,
Y.
Huang
,
T.
Rajh
,
D. D.
Awschalom
,
T.
Zhong
, and
S.
Guha
,
APL Mater.
8
,
031111
(
2020
).
19.
J.
Paulraj
,
R.
Wang
,
M.
Sellars
, and
B.
Luther-Davies
,
Appl. Phys. A
122
,
422
(
2016
).
20.
T.
Tawara
,
H.
Omi
,
T.
Hozumi
,
R.
Kaji
,
S.
Adachi
,
H.
Gotoh
, and
T.
Sogawa
,
Appl. Phys. Lett.
102
,
241918
(
2013
).
21.
K. J.
Tielrooij
,
L.
Orona
,
A.
Ferrier
,
M.
Badioli
,
G.
Navickaite
,
S.
Coop
,
S.
Nanot
,
B.
Kalinic
,
T.
Cesca
,
L.
Gaudreau
,
Q.
Ma
,
A.
Centeno
,
A.
Pesquera
,
A.
Zurutuza
,
H.
de Riedmatten
,
P.
Goldner
,
F. J.
Garcia de Abajo
,
P.
Jarillo-Herrero
, and
F. H. L.
Koppens
,
Nat. Phys.
11
,
281
(
2015
).
22.
G.
Kurizki
,
P.
Bertet
,
Y.
Kubo
,
K.
Mølmer
,
D.
Petrosyan
,
P.
Rabl
, and
J.
Schmiedmayer
,
Proc. Natl. Acad. Sci. U.S.A.
112
,
3866
(
2015
).
23.
S.
Dutta
,
E. A.
Goldschmidt
,
S.
Barik
,
U.
Saha
, and
E.
Waks
,
Nano Lett.
20
,
741
(
2020
).
24.
S.
Wang
,
L.
Yang
,
R.
Cheng
,
Y.
Xu
,
M.
Shen
,
R. L.
Cone
,
C. W.
Thiel
, and
H. X.
Tang
, arXiv:191207584 Phys (
2019
).
25.
T. T.
Van
and
J. P.
Chang
,
Surf. Sci.
596
,
1
(
2005
).
26.
M.
Scarafagio
,
A.
Tallaire
,
K.-J.
Tielrooij
,
D.
Cano
,
A.
Grishin
,
M.-H.
Chavanne
,
F. H. L.
Koppens
,
A.
Ringuedé
,
M.
Cassir
,
D.
Serrano
,
P.
Goldner
, and
A.
Ferrier
,
J. Phys. Chem. C
123
,
13354
(
2019
).
27.
M.
Scarafagio
,
A.
Tallaire
,
M.-H.
Chavanne
,
M.
Cassir
,
A.
Ringuedé
,
D.
Serrano
,
P.
Goldner
, and
A.
Ferrier
,
Phys. Status Solidi A
217
,
1900909
(
2020
).
28.
B.
Lacroix
,
F.
Paumier
, and
R. J.
Gaboriaud
,
Phys. Rev. B
84
,
014104
(
2011
).
29.
R.
Lo Nigro
,
R. G.
Toro
,
G.
Malandrino
,
G. G.
Condorelli
,
V.
Raineri
, and
I. L.
Fragalà
,
Adv. Funct. Mater.
15
,
838
(
2005
).
30.
G. P.
Flinn
,
K. W.
Jang
,
J.
Ganem
,
M. L.
Jones
,
R. S.
Meltzer
, and
R. M.
Macfarlane
,
J. Lumin.
58
,
374
(
1994
).
31.
V.
Astié
,
C.
Millon
,
J. M.
Decams
, and
A.
Bartasyte
, in
Chemical Vapor Deposition for Nanotechnology
, edited by
P.
Mandracci
(
IntechOpen
,
2019
), pp.
2
23
.
32.
N.
Jehanathan
,
O.
Lebedev
,
I.
Galard
,
C.
Dubourdieu
, and
G. V.
Tendeloo
,
Nanotechnology
21
,
075705
(
2010
).
33.
C.
Durand
,
C.
Dubourdieu
,
C.
Vallée
,
V.
Loup
,
M.
Bonvalot
,
O.
Joubert
,
H.
Roussel
, and
O.
Renault
,
J. Appl. Phys.
96
,
1719
(
2004
).
34.
H.
Zhang
,
J.
Yang
,
J. A.
Brown
,
S.
Gray
,
T. D.
Ketcham
,
B. G.
Aitken
, and
D. A.
Nolan
,
Opt. Mater. Express
10
,
99
(
2020
).
35.
F.
Silva
,
A.
Gicquel
,
A.
Tardieu
,
P.
Cledat
, and
T.
Chauveau
,
Diam. Relat. Mater.
5
,
338
(
1996
).
36.
H. C.
Aspinall
, in
Rare Earth Oxide Thin Films
, edited by
M.
Fanciulli
, and
G.
Scarel
(
Springer Berlin Heidelberg
,
Berlin
,
2007
), pp.
53
72
.
37.
H. O.
Pierson
, Handbook on Chemical Vapor Deposition CVD (Noyes Publications, Park Ridge, New Jersey, 1992)
38.
Y.-M.
Wu
and
J.-T.
Lo
,
Jpn. J. Appl. Phys.
37
,
4943
(
1998
).
39.
J.
Xia
,
W.
Liang
,
Q.
Miao
, and
D.
Depla
,
Appl. Surf. Sci.
439
,
545
(
2018
).
40.
L.
Tarnawska
,
A.
Giussani
,
P.
Zaumseil
,
M. A.
Schubert
,
R.
Paszkiewicz
,
O.
Brandt
,
P.
Storck
, and
T.
Schroeder
,
J. Appl. Phys.
108
,
063502
(
2010
).
41.
R.
Bachelet
,
P.
de Coux
,
B.
Warot-Fonrose
,
V.
Skumryev
,
G.
Niu
,
B.
Vilquin
,
G.
Saint-Girons
, and
F.
Sanchez
,
CrystEngComm
16
,
10741
(
2014
).
42.
M. E.
Hunter
,
M. J.
Reed
,
N. A.
El-Masry
,
J. C.
Roberts
, and
S. M.
Bedair
,
Appl. Phys. Lett.
76
,
1935
(
2000
).
43.
C. W.
Nieh
,
Y. J.
Lee
,
W. C.
Lee
,
Z. K.
Yang
,
A. R.
Kortan
,
M.
Hong
,
J.
Kwo
, and
C.-H.
Hsu
,
Appl. Phys. Lett.
92
,
061914
(
2008
).
44.
X.
Wu
,
J.-G.
Li
,
Q.
Zhu
,
J.
Li
,
R.
Ma
,
T.
Sasaki
,
X.
Li
,
X.
Sun
, and
Y.
Sakka
,
Dalton Trans.
41
,
1854
(
2012
).
45.
A.
Fert
,
Bull. Soc. Fr. Minér. Cristallogr.
85
,
267
(
1962
).
46.
G.
Adachi
and
N.
Imanaka
,
Chem. Rev.
98
,
1479
(
1998
).
47.
M.
Inokuti
and
F.
Hirayama
,
J. Chem. Phys.
43
,
1978
(
1965
).
48.
M.
Buijs
,
A.
Meyerink
, and
G.
Blasse
,
J. Lumin.
37
,
9
(
1987
).
49.
A.
Ferrier
,
C. W.
Thiel
,
B.
Tumino
,
M. O.
Ramirez
,
L. E.
Bausá
,
R. L.
Cone
,
A.
Ikesue
, and
P.
Goldner
,
Phys. Rev. B
87
,
041102
(
2015
).
50.
R. D.
Shannon
and
C. T.
Prewitt
,
Acta Crystallogr. B
25
,
925
(
1969
).
51.
S.
Welinski
,
C. W.
Thiel
,
J.
Dajczgewand
,
A.
Ferrier
,
R. L.
Cone
,
R. M.
Macfarlane
,
T.
Chanelière
,
A.
Louchet-Chauvet
, and
P.
Goldner
,
Opt. Mater.
63
,
69
(
2017
).
52.
A. M.
Stoneham
,
Proc. Phys. Soc.
89
,
909
(
1966
).
53.
K.
de Oliveira Lima
,
R.
Rocha Gonçalves
,
D.
Giaume
,
A.
Ferrier
, and
P.
Goldner
,
J. Lumin.
168
,
276
(
2015
).

Supplementary Material

You do not currently have access to this content.