A new computational setup suitable for the exploration of nonlinear effects in free propagation and dissipation of surface acoustic waves (SAWs) is developed based on the molecular dynamics (MD) simulation method. First applications of the computational model demonstrate the ability of atomistic simulations to reproduce the key features of the nonlinear SAW evolution, which are distinct from their well-known counterparts in bulk wave propagation. In particular, the MD simulations predict the increasing localization of the acoustic energy near the surface of the substrate during the nonlinear sharpening of the wave profile, which leads to the formation of a shock front with characteristic cusps in the horizontal strain and velocity profiles. The peak values of surface strain and velocity associated with the cusps can significantly exceed those of the initial wave. Some of the effects revealed in the MD simulations are outside the capabilities of continuum-level models and have not been explored so far. These include the observation of an unusual quadratic correction to the dispersion relation at short wavelengths defined by the frequency-dependent localization of SAWs near the surface of the substrate, the establishment of a new mechanism of the energy dissipation at the SAW shock front, where SAW harmonics generated at the limit of frequency up-conversion transform very effectively into clouds of phonon wave packets descending into the substrate bulk, and the generation of localized zones of plastic deformation at a substantial distance from the wave source. Overall, the MD methodology developed for atomistic modeling of free SAW propagation not only enables detailed analysis of the intrinsic properties of nonlinear SAWs and verification of theoretical models but also opens up a broad range of opportunities for investigation of acoustically induced surface processes, material modification by SAWs, and the interaction of SAWs with preexisting crystal defects and other material heterogeneities.

1.
A.
Ben-Menahem
and
S. J.
Singh
,
Seismic Waves and Sources
(
Springer-Verlag
,
New York
,
1981
).
2.
C. E.
O'Connell-Rodwell
,
B. T.
Arnason
, and
L. A.
Hart
, “
Seismic properties of Asian elephant (Elephas maximus) vocalizations and locomotion
,”
J. Acoust. Soc. Am.
108
,
3066
3072
(
2000
).
3.
Modern Acoustical Techniques for the Measurement of Mechanical Properties
, edited by
M.
Levy
,
H. E.
Bass
, and
R.
Stern
(
Academic Press
,
New York
,
2001
).
4.
P.
Hess
, “
Surface acoustic waves in materials science
,”
Phys. Today
55
(
3
),
42
47
(
2002
).
5.
A. M.
Lomonosov
and
P.
Hess
, “
Impulsive fracture of silicon by elastic surface pulses with shocks
,”
Phys. Rev. Lett.
89
,
095501
(
2002
).
6.
V. V.
Kozhushko
,
A. M.
Lomonosov
, and
P.
Hess
, “
Intrinsic strength of silicon crystals in pure- and combined-mode fracture without precrack
,”
Phys. Rev. Lett.
98
,
195505
(
2007
).
7.
G.
Lehmann
,
A. M.
Lomonosov
,
P.
Hess
, and
P.
Gumbsch
, “
Impulsive fracture of fused quartz and silicon crystals by nonlinear surface acoustic waves
,”
J. Appl. Phys.
94
,
2907
2914
(
2003
).
8.
A. M.
Lomonosov
,
P. V.
Grigoriev
, and
P.
Hess
, “
Sizing of partially closed surface-breaking microcracks with broadband Rayleigh waves
,”
J. Appl. Phys.
105
,
084906
(
2009
).
9.
F.
Hofmann
,
M. P.
Short
, and
C. A.
Dennett
, “
Transient grating spectroscopy: An ultrarapid, nondestructive materials evaluation technique
,”
MRS Bull.
44
,
392
402
(
2019
).
10.
I. A.
Viktorov
,
Rayleigh and Lamb Waves Physical Theory and Applications
(
Plenum Press
,
New York
,
1967
).
11.
M. F.
Lewis
, “
Rayleigh waves—A progress report
,”
Eur. J. Phys.
16
,
1
7
(
1995
).
12.
K.-Y.
Hashimoto
,
Surface Acoustic Wave Devices in Telecommunications: Modeling and Simulation
(
Springer-Verlag
,
Berlin
,
2000
).
13.
Y. J.
Liu
,
X.
Ding
,
S.-C. S.
Lin
,
J.
Shi
,
I.-K.
Chiang
, and
T. J.
Huang
, “
Surface acoustic wave driven light shutters using polymer-dispersed liquid crystals
,”
Adv. Mater.
23
,
1656
1659
(
2011
).
14.
G.
Schmera
and
L. B.
Kish
, “
Surface diffusion enhanced chemical sensing by surface acoustic waves
,”
Sens. Actuators B Chem.
93
,
159
163
(
2003
).
15.
A.
Buvailo
,
Y.
Xing
,
J.
Hines
, and
E.
Borguet
, “
Thin polymer film based rapid surface acoustic wave humidity sensors
,”
Sens. Actuators B Chem.
156
,
444
449
(
2011
).
16.
L. Y.
Yeo
and
J. R.
Friend
, “
Surface acoustic wave microfluidics
,”
Annu. Rev. Fluid Mech.
46
,
379
406
(
2014
).
17.
X.
Ding
,
S.-C. S.
Lin
,
B.
Kiraly
,
H.
Yue
,
S.
Li
,
I.-K.
Chiang
,
J.
Shi
,
S. J.
Benkovic
, and
T. J.
Huang
, “
On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves
,”
Proc. Natl. Acad. Sci. U.S.A.
109
,
11105
11109
(
2012
).
18.
M. C.
Jo
and
R.
Guldiken
, “
Dual surface acoustic wave-based active mixing in a microfluidic channel
,”
Sens. Actuators A Phys.
196
,
1
7
(
2013
).
19.
C. D.
Wood
,
S. D.
Evans
,
J. E.
Cunningham
,
R.
O’Rorke
,
C.
Wälti
, and
A. G.
Davies
, “
Alignment of particles in microfluidic systems using standing surface acoustic waves
,”
Appl. Phys. Lett.
92
,
044104
(
2008
).
20.
M.
Hennig
,
J.
Neumann
,
A.
Wixforth
,
J. O.
Rädler
, and
M. F.
Schneider
, “
Dynamic patterns in a supported lipid bilayer driven by standing surface acoustic waves
,”
Lab Chip
9
,
3050
3053
(
2009
).
21.
S. R.
Heron
,
R.
Wilson
,
S. A.
Shaffer
,
D. R.
Goodlett
, and
J. M.
Cooper
, “
Surface acoustic wave nebulization of peptides as a microfluidic interface for mass spectrometry
,”
Anal. Chem.
82
,
3985
3989
(
2010
).
22.
J.
Ho
,
M. K.
Tan
,
D. B.
Go
,
L. Y.
Yeo
,
J. R.
Friend
, and
H.-C.
Chang
, “
Paper-based microfluidic surface acoustic wave sample delivery and ionization source for rapid and sensitive ambient mass spectrometry
,”
Anal. Chem.
83
,
3260
3266
(
2011
).
23.
Y.
Huang
,
S. H.
Yoon
,
S. R.
Heron
,
C. D.
Masselon
,
J. S.
Edgar
,
F.
Tureček
, and
D. R.
Goodlett
, “
Surface acoustic wave nebulization produces ions with lower internal energy than electrospray ionization
,”
J. Am. Soc. Mass Spectrom.
23
,
1062
1070
(
2012
).
24.
A. A.
Kolomenskii
,
H. A.
Schuessler
,
V. G.
Mikhalevich
, and
A. A.
Maznev
, “
Interaction of laser-generated surface acoustic pulses with fine particles: Surface cleaning and adhesion studies
,”
J. Appl. Phys.
84
,
2404
2410
(
1998
).
25.
M. V.
Shugaev
,
A. J.
Manzo
,
C.
Wu
,
V. Y.
Zaitsev
,
H.
Helvajian
, and
L. V.
Zhigilei
, “
Strong enhancement of surface diffusion by nonlinear surface acoustic waves
,”
Phys. Rev. B
91
,
235450
(
2015
).
26.
L. V.
Zhigilei
and
H.
Helvajian
, “
Acoustic processes in materials
,”
MRS Bull.
44
,
345
349
(
2019
).
27.
E. A.
Zabolotskaya
, “
Nonlinear propagation of plane and circular Rayleigh waves in isotropic solids
,”
J. Acoust. Soc. Am.
91
,
2569
2575
(
1992
).
28.
D. J.
Shull
,
M. F.
Hamilton
,
Y. A.
Il’insky
, and
E. A.
Zabolotskaya
, “
Harmonic generation in plane and cylindrical nonlinear Rayleigh waves
,”
J. Acoust. Soc. Am.
94
,
418
427
(
1993
).
29.
M. F.
Hamilton
,
Y. A.
Il’insky
, and
E. A.
Zabolotskaya
, “
Local and nonlocal nonlinearity in Rayleigh waves
,”
J. Acoust. Soc. Am.
97
,
882
890
(
1995
).
30.
M. F.
Hamilton
,
Y. A.
Il’insky
, and
E. A.
Zabolotskaya
, “
Evolution equations for nonlinear Rayleigh waves
,”
J. Acoust. Soc. Am.
97
,
891
897
(
1995
).
31.
M. F.
Hamilton
,
Y. A.
Il’inskii
, and
E. A.
Zabolotskaya
, “
Nonlinear surface acoustic waves in crystals
,”
J. Acoust. Soc. Am.
105
,
639
651
(
1999
).
32.
A.
Lomonosov
,
V. G.
Mikhalevich
,
P.
Hess
,
E. Y.
Knight
,
M. F.
Hamilton
, and
E. A.
Zabolotskaya
, “
Laser-generated nonlinear Rayleigh waves with shocks
,”
J. Acoust. Soc. Am.
105
,
2093
2096
(
1999
).
33.
N.
Kalyanasundaram
, “
Nonlinear surface acoustic waves on an isotropic solid
,”
Int. J. Eng. Sci.
19
,
279
286
(
1981
).
34.
N.
Kalayanasundaram
, “
Nonlinear mode coupling of surface acoustic waves on an isotropic solid
,”
Int. J. Eng. Sci.
19
,
435
441
(
1981
).
35.
N.
Kalyanasundaram
,
R.
Ravindran
, and
P.
Prasad
, “
Coupled amplitude theory of nonlinear surface acoustic waves
,”
J. Acoust. Soc. Am.
72
,
488
493
(
1982
).
36.
R. W.
Lardner
, “
Nonlinear surface waves on an elastic solid
,”
Int. J. Eng. Sci.
21
,
1331
1342
(
1983
).
37.
R. W.
Lardner
, “
Nonlinear Rayleigh waves: Harmonic generation, parametric amplification and thermoviscous damping
,”
J. Appl. Phys.
55
,
3251
3260
(
1984
).
38.
R. W.
Lardner
, “
Waveform distortion and shock development in nonlinear Rayleigh waves
,”
Int. J. Eng. Sci.
23
,
113
118
(
1985
).
39.
M.
Planat
, “
Multiple scale analysis of the nonlinear surface acoustic wave propagation in anisotropic crystals
,”
J. Appl. Phys.
57
,
4911
4915
(
1985
).
40.
R. W.
Lardner
, “
Nonlinear surface acoustic waves on an elastic solid for general anisotropy
,”
J. Elast.
16
,
63
73
(
1986
).
41.
R. W.
Lardner
and
G. E.
Tupholme
, “
Nonlinear surface waves on cubic materials
,”
J. Elast.
16
,
251
265
(
1986
).
42.
V. E.
Gusev
,
W.
Lauriks
, and
J.
Thoen
, “
Theory for the time evolution of nonlinear Rayleigh waves in an isotropic solid
,”
Phys. Rev. B
55
,
9344
9347
(
1997
).
43.
V. E.
Gusev
,
W.
Lauriks
, and
J.
Thoen
, “
New evolution equations for the nonlinear surface acoustic waves on an elastic solid of general anisotropy
,”
J. Acoust. Soc. Am.
103
,
3203
3215
(
1998
).
44.
V. P.
Reutov
, “
Use of the averaged variational principle for describing multiwave interactions of elastic surface waves
,”
Radiophys. Quant. Electron.
16
,
1307
1316
(
1973
).
45.
L. D.
Landau
and
E. M.
Lifshitz
,
Theory of Elasticity
(
Pergamon Press
,
New York
,
1986
).
46.
A. J.
Manzo
and
H.
Helvajian
, “
Demonstration of enhanced surface mobility of adsorbate cluster species by surface acoustic wave excitation induced by a pulsed laser
,”
Proc. SPIE
8969
,
896908
(
2014
).
47.
C.
Wu
,
V. Y.
Zaitsev
, and
L. V.
Zhigilei
, “
Acoustic enhancement of surface diffusion
,”
J. Phys. Chem. C
117
,
9252
9258
(
2013
).
48.
D. R.
Denison
, “
Phonic desorption
,”
J. Vac. Sci. Technol.
6
,
214
217
(
1969
).
49.
C.
Krischer
and
D.
Lichtman
, “
Observation of desorption from quartz induced by surface acoustic waves
,”
Phys. Lett. A
44
,
99
100
(
1973
).
50.
N. G.
Basov
,
E. M.
Belenov
,
M. A.
Gubin
,
M. S.
Kurdoglyan
,
V. V.
Nikitin
,
A. N.
Oraevskĭ
, and
B. N.
Chichkov
, “
New ways of obtaining cold atoms and molecules
,”
Sov. J. Quantum Electron.
17
,
919
922
(
1987
).
51.
H.
Nishiyama
,
N.
Saito
,
H.
Chou
,
K.
Sato
, and
Y.
Inoue
, “
Effects of surface acoustic waves on adsorptive properties of ZnO and NiO thin films deposited on ferroelectric substrates
,”
Surf. Sci.
433–435
,
525
528
(
1999
).
52.
Y.
Inoue
,
Y.
Matsukawa
, and
K.
Sato
, “
Effect of surface acoustic wave generated on ferroelectric support upon catalysis
,”
J. Am. Chem. Soc.
111
,
8965
8966
(
1989
).
53.
S.
Kelling
,
T.
Mitrelias
,
Y.
Matsumoto
,
V. P.
Ostanin
, and
D. A.
King
, “
Acoustic wave enhancement of the catalytic oxidation of carbon monoxide over Pt {110}
,”
J. Chem. Phys.
107
,
5609
5612
(
1997
).
54.
Y.
Inoue
, “
Effects of acoustic waves-induced dynamic lattice distortion on catalytic and adsorptive properties of metal, alloy and metal oxide surfaces
,”
Surf. Sci. Rep.
62
,
305
336
(
2007
).
55.
Y.
Inoue
, “
Acoustic enhancement of surface reactions
,”
MRS Bull.
44
,
361
371
(
2019
).
56.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon Press
,
Oxford
,
1987
).
57.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulations: From Algorithms to Applications
(
Academic Press
,
San Diego
,
1996
).
58.
L. V.
Zhigilei
,
Z.
Lin
,
D. S.
Ivanov
,
E.
Leveugle
,
W. H.
Duff
,
D.
Thomas
,
C.
Sevilla
, and
S. J.
Guy
, “
Atomic/molecular-level simulations of laser-materials interactions
,” in
Laser-Surface Interactions for New Materials Production: Tailoring Structure and Properties
, Springer Series in Materials Science Vol. 130, edited by
A.
Miotello
and
P. M.
Ossi
(
Springer Verlag
,
New York
,
2010
), pp.
43
79
.
59.
B. L.
Holian
and
G. K.
Straub
, “
Molecular dynamics of shock waves in one-dimensional chains
,”
Phys. Rev. B
18
,
1593
1608
(
1978
).
60.
V.
Zhakhovskiĭ
,
S.
Zybin
,
K.
Nishihara
, and
S.
Anisimov
, “
Shock wave structure in Lennard-Jones crystal via molecular dynamics
,”
Phys. Rev. Lett.
83
,
1175
1178
(
1999
).
61.
B. L.
Holian
and
P. S.
Lomdahl
, “
Plasticity induced by shock-waves in nonequilibrium molecular-dynamics simulations
,”
Science
280
,
2085
2088
(
1998
).
62.
K.
Kadau
,
T. C.
Germann
,
P. S.
Lomdahl
, and
B. L.
Holian
, “
Microscopic view of structural phase transitions induced by shock waves
,”
Science
296
,
1681
1684
(
2002
).
63.
V. V.
Zhakhovsky
,
M. M.
Budzevich
,
N. A.
Inogamov
,
I. I.
Oleynik
, and
C. T.
White
, “
Two-zone elastic-plastic single shock waves in solids
,”
Phys. Rev. Lett.
107
,
135502
(
2011
).
64.
L.
Koči
,
E. M.
Bringa
,
D. S.
Ivanov
,
J.
Hawreliak
,
J.
McNaney
,
A.
Higginbotham
,
L. V.
Zhigilei
,
A. B.
Belonoshko
,
B. A.
Remington
, and
R.
Ahuja
, “
Simulation of shock-induced melting of Ni using molecular dynamics coupled to a two-temperature model
,”
Phys. Rev. B
74
,
012101
(
2006
).
65.
D. S.
Ivanov
,
L. V.
Zhigilei
,
E. M.
Bringa
,
M.
De Koning
,
B. A.
Remington
,
M. J.
Caturla
, and
S. M.
Pollaine
, “
Molecular dynamics simulations of shocks including electronic heat conduction and electron-phonon coupling
,”
AIP Conf. Proc.
706
,
225
228
(
2004
).
66.
T.
Hatano
, “
Dislocation nucleation in shocked fcc solids: Effects of temperature and preexisting voids
,”
Phys. Rev. Lett.
93
,
085501
(
2004
).
67.
A. M.
Dongare
,
A. M.
Rajendran
,
B.
LaMattina
,
M. A.
Zikry
, and
D. W.
Brenner
, “
Atomic scale studies of spall behavior in nanocrystalline Cu
,”
J. Appl. Phys.
108
,
113518
(
2010
).
68.
S.-N.
Luo
,
Q.
An
,
T. C.
Germann
, and
L.-B.
Han
, “
Shock-induced spall in solid and liquid Cu at extreme strain rates
,”
J. Appl. Phys.
106
,
013502
(
2009
).
69.
A.
Strachan
,
T.
Çağın
, and
W. A.
Goddard
 III
, “
Critical behavior in spallation failure of metals
,”
Phys. Rev. B
63
,
060103
(
2001
).
70.
V. Y.
Klimenko
and
A. N.
Dremin
, “
Structure of a shock-wave front in a solid
,”
Sov. Phys. Dokl.
25
,
288
289
(
1980
).
71.
V. V.
Zhakhovskii
,
K.
Nishihara
, and
S. I.
Anisimov
, “
Shock wave structure in dense gases
,”
J. Exp. Theor. Phys. Lett.
66
,
99
105
(
1997
).
72.
S. I.
Anisimov
,
V. V.
Zhakhovskii
, and
V. E.
Fortov
, “
Shock wave structure in simple liquids
,”
J. Exp. Theor. Phys. Lett.
65
,
755
761
(
1997
).
73.
M. M.
Budzevich
,
V. V.
Zhakhovsky
,
C. T.
White
, and
I. I.
Oleynik
, “
Evolution of shock-induced orientation-dependent metastable states in crystalline aluminum
,”
Phys. Rev. Lett.
109
,
125505
(
2012
).
74.
V. V.
Zhakhovsky
,
M. M.
Budzevich
,
A. C.
Landerville
,
I. I.
Oleynik
, and
C. T.
White
, “
Laminar, cellular, transverse, and multiheaded pulsating detonations in condensed phase energetic materials from molecular dynamics simulations
,”
Phys. Rev. E
90
,
033312
(
2014
).
75.
C.
Schäfer
,
H. M.
Urbassek
,
L. V.
Zhigilei
, and
B. J.
Garrison
, “
Pressure-transmitting boundary conditions for molecular-dynamics simulations
,”
Comp. Mater. Sci.
24
,
421
429
(
2002
).
76.
E. T.
Karim
,
M.
Shugaev
,
C.
Wu
,
Z.
Lin
,
R. F.
Hainsey
, and
L. V.
Zhigilei
, “
Atomistic simulation study of short pulse laser interactions with a metal target under conditions of spatial confinement by a transparent overlayer
,”
J. Appl. Phys.
115
,
183501
(
2014
).
77.
M. V.
Shugaev
,
I.
Gnilitskyi
,
N. M.
Bulgakova
, and
L. V.
Zhigilei
, “
Mechanism of single-pulse ablative generation of laser-induced periodic surface structures
,”
Phys. Rev. B
96
,
205429
(
2017
).
78.
C.-Y.
Shih
,
M. V.
Shugaev
,
C.
Wu
, and
L. V.
Zhigilei
, “
Generation of subsurface voids, incubation effect, and formation of nanoparticles in short pulse laser interactions with bulk metal targets in liquid: Molecular dynamics study
,”
J. Phys. Chem. C
121
,
16549
16567
(
2017
).
79.
A. V.
Bolesta
,
L.
Zheng
,
D. L.
Thompson
, and
T. D.
Sewell
, “
Molecular dynamics simulations of shock waves using the absorbing boundary condition: A case study of methane
,”
Phys. Rev. B
76
,
224108
(
2007
).
80.
A. A.
Kolomenskii
,
V. A.
Lioubimov
,
S. N.
Jerebtsov
, and
H. A.
Schuessler
, “
Nonlinear surface acoustic wave pulses in solids: Laser excitation, propagation, interactions (invited)
,”
Rev. Sci. Instrum.
74
,
448
452
(
2003
).
81.
S. D.
Stoddard
and
J.
Ford
, “
Numerical experiments on the stochastic behavior of a Lennard-Jones gas system
,”
Phys. Rev. A
8
,
1504
1512
(
1973
).
82.
C.
Taillan
,
N.
Combe
, and
J.
Morillo
, “
Nanoscale self-organization using standing surface acoustic waves
,”
Phys. Rev. Lett.
106
,
076102
(
2011
).
83.
C.
Taillan
,
N.
Combe
, and
J.
Morillo
, “
Chladni figures at the nanoscale
,”
Eur. Phys. J. B
88
,
317
(
2015
).
84.
R.
Stoneley
, “
The propagation of surface elastic waves in a cubic crystal
,”
Proc. R. Soc. London Ser. A
232
,
447
458
(
1955
).
85.
J. R.
Ray
and
A.
Rahman
, “
Statistical ensembles and molecular dynamics studies of anisotropic solids
,”
J. Chem. Phys.
80
,
4423
4428
(
1984
).
86.
M. I.
Rabinovich
and
D. I.
Trubetskov
,
Oscillations and Waves in Linear and Nonlinear Systems
(
Kluver Academic Publishers
,
Dordrecht
,
1989
).
87.
N. M.
Ryskin
and
D. I.
Trubetskov
,
Nonlinear Waves
(
Fizmatlit
,
Moscow
,
2010
) (in Russian).
88.
A.
Lomonosov
and
P.
Hess
, “
Effects of nonlinear elastic surface pulses in anisotropic silicon crystals
,”
Phys. Rev. Lett.
83
,
3876
3879
(
1999
).
89.
C.
Zener
, “
Internal friction in solids II. General theory of thermoelastic internal friction
,”
Phys. Rev.
53
,
90
99
(
1938
).
90.
D. S.
Ivanov
and
L. V.
Zhigilei
, “
Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films
,”
Phys. Rev. B
68
,
064114
(
2003
).
91.
T.
Halicioğlu
and
G. M.
Pound
, “
Calculation of potential energy parameters from crystalline state properties
,”
Phys. Status Solidi A
30
,
619
623
(
1975
).
92.
S.
Zhen
and
G. J.
Davies
, “
Calculation of the Lennard-Jones n-m potential energy parameters for metals
,”
Phys. Status Solidi A
78
,
595
605
(
1983
).
93.
Y. A.
Pishchal'nikov
,
O. A.
Sapozhnikov
, and
V. A.
Khokhlova
, “
A modification of the spectral description of nonlinear acoustic waves with discontinuities
,”
Acoust. Phys.
42
,
362
367
(
1996
).
94.
E. Y.
Knight
,
M. F.
Hamilton
,
Y. A.
Il’inskii
, and
E. A.
Zabolotskaya
, “
On Rayleigh wave nonlinearity, and analytical approximation of the shock formation distance
,”
J. Acoust. Soc. Am.
102
,
2529
2535
(
1997
).
95.
O. V.
Rudenko
and
S. I.
Soluyan
,
Theoretical Foundations of Nonlinear Acoustics
(
Plenum Publishing Corporation
,
New York
,
1977
).
96.
D. T.
Blackstock
, “
Nonlinear acoustics (theoretical)
,” in
American Institute of Physics Handbook
, 3rd ed. (
McGraw-Hill
,
New York
,
1972
) Chap. 3n.
97.
L. K.
Zarembo
and
V. A.
Krasil’nikov
, “
Nonlinear phenomena in the propagation of elastic waves in solids
,”
Sov. Phys. Usp.
13
,
778
797
(
1971
).
98.
J. K.
Nørskov
,
T.
Bligaard
,
B.
Hvolbæk
,
F.
Abild-Pedersen
,
I.
Chorkendorff
, and
C. H.
Christensen
, “
The nature of the active site in heterogeneous metal catalysis
,”
Chem. Soc. Rev.
37
,
2163
2171
(
2008
).
99.
B.
von Boehn
,
M.
Foerster
,
M.
von Boehn
,
J.
Prat
,
F.
Macià
,
B.
Casals
,
M. W.
Khaliq
,
A.
Hernández-Mínguez
,
L.
Aballe
, and
R.
Imbihl
, “
On the promotion of catalytic reactions by surface acoustic waves
,”
Angew. Chem. Int. Ed.
(accepted) (
2020
).

Supplementary Material

You do not currently have access to this content.