Acoustic cavitation bubbles are considered to be generated due to heterogeneous nucleation because a smaller amount of energy is required in this case compared with homogeneous nucleation. A typical example of such nucleation sites is tiny cracks filled with gas, commonly termed as “gas pocket.” Such microcracks can exist in abundance on the surface of reactor walls or sonotrodes used for the cavitation treatment. Eventually, the heterogeneously nucleated cavitation bubble is detached from the solid surface; however, the detachment mechanism has been unclear so far. Therefore, the present study numerically investigated the dynamic behavior of the cavitation bubble originated from the heterogeneous nucleation at wall cracks. During propagation of an ultrasound wave through a liquid, gas pockets in cracks oscillate sinusoidally when the sound pressure amplitude and crack radius are small. In this case, the bubble cannot detach from the surface. On the other hand, as the sound pressure amplitude, crack size, and/or contact angle become larger, the bubble begins to oscillate non-linearly that causes liquid jetting. The liquid jetting can cause the bubble detachment from the surface due to the interaction between the liquid jet and the bottom wall. Stronger liquid jetting makes many small detached bubbles.

1.
K.
Yasui
,
Dynamics of Acoustic Bubbles, Sonochemistry and the Acoustic Bubble
(
Elsevier
,
Amsterdam
,
2015
), pp.
41
83
.
2.
M. P.
Brenner
,
S.
Hilgenfeldt
, and
D.
Lohse
,
Rev. Mod. Phys.
74
,
425
484
(
2002
).
3.
W.
Lauterborn
and
T.
Kurz
,
Rep. Prog. Phys.
73
,
106501
(
2010
).
4.
Lord Rayleigh
,
London Edinburgh Dublin Philos. Mag. J. Sci.
6
(
34
),
94
98
(
1917
).
5.
M. S.
Plesset
and
A.
Prosperetti
,
Annu. Rev. Fluid Mech.
9
,
145
185
(
1977
).
6.
F. R.
Gilmore
, “The growth or collapse of a spherical bubble in a viscous compressible liquid,” Report No. 26-4, California Institute of Technology, 1952.
7.
J. B.
Keller
and
M.
Miksis
,
J. Acoust. Soc. Am.
68
,
628
633
(
1980
).
8.
S.
Popinet
and
S.
Zaleski
,
J. Fluid Mech.
464
,
137
163
(
2002
).
9.
W.
Lauterborn
,
J. Acoust. Soc. Am.
59
,
283
293
(
1976
).
10.
U.
Parlitz
,
V.
Englisch
,
C.
Scheffczyk
, and
W.
Lauterborn
,
J. Acoust. Soc. Am.
88
,
1061
1077
(
1990
).
11.
A. I.
Eller
and
L. A.
Crum
,
J. Acoust. Soc. Am.
47
,
762
767
(
1970
).
12.
M. P.
Brenner
,
D.
Lohse
, and
T. F.
Dupont
,
Phys. Rev. Lett.
75
,
954
957
(
1995
).
13.
R. G.
Holt
and
D. F.
Gaitan
,
Phys. Rev. Lett.
77
,
3791
3794
(
1996
).
14.
M.
Versluis
,
D. E.
Goertz
,
P.
Palanchon
,
I. L.
Heitman
,
S. M.
van der Meer
,
B.
Dollet
,
N.
de Jong
, and
D.
Lohse
,
Phys. Rev. E
82
,
026321
(
2010
).
15.
A.
Philipp
and
W.
Lauterborn
,
J. Fluid Mech.
361
,
75
116
(
1998
).
16.
C.-D.
Ohl
,
M.
Arora
,
R.
Dijkink
,
V.
Janve
, and
D.
Lohse
,
Appl. Phys. Lett.
89
,
074102
(
2006
).
17.
V.
Minsier
,
J. D.
Wilde
, and
J.
Proost
,
J. Appl. Phys.
106
,
084906
(
2009
).
18.
E.
Samiei
,
M.
Shams
, and
R.
Ebrahimi
,
Eur. J. Mech. B Fluids
30
,
41
50
(
2011
).
19.
Q.
Wang
,
J. Fluid Mech.
745
,
509
536
(
2014
).
20.
H.
Wu
,
C.
Zhou
,
Z.
Pu
,
H.
Yu
, and
D.
Li
,
Ultrason. Sonochem.
58
,
104704
(
2019
).
21.
X.
Huang
,
H.
Hu
,
S.
Li
, and
A.-M.
Zhang
,
Ultrason. Sonochem.
64
,
104969
(
2020
).
22.
X.
Ma
,
B.
Huang
,
Y.
Li
,
Q.
Chang
,
S.
Qiu
,
Z.
Su
,
X.
Fu
, and
G.
Wang
,
Ultrason. Sonochem.
42
,
619
630
(
2018
).
23.
X.
Huang
,
Q.-X.
Wang
,
A.-M.
Zhang
, and
J.
Su
,
Ultrason. Sonochem.
43
,
166
174
(
2018
).
24.
S.
Qiu
,
X.
Ma
,
B.
Huang
,
D.
Li
,
G.
Wang
, and
M.
Zhang
,
Ultrason. Sonochem.
49
,
196
205
(
2018
).
25.
J. M.
Rosselló
,
W.
Lauterborn
,
M.
Koch
,
T.
Wilken
,
T.
Kurz
, and
R.
Mettin
,
Phys. Fluids
30
,
122004
(
2018
).
26.
T.
Yamamoto
,
S.-I.
Hatanaka
, and
S. V.
Komarov
,
Ultrason. Sonochem.
58
,
104684
(
2019
).
27.
X.
Guo
,
C.
Cai
,
G.
Xu
,
Y.
Yang
,
J.
Tu
,
P.
Huang
, and
D.
Zhang
,
Ultrason. Sonochem.
39
,
863
871
(
2017
).
28.
T.
Yamamoto
and
S. V.
Komarov
,
Ultrason. Sonochem.
62
,
104874
(
2020
).
29.
T.
Tuziuti
,
K.
Yasui
,
M.
Sivakumar
,
Y.
Iida
, and
N.
Miyoshi
,
J. Phys. Chem. A
109
,
4869
4872
(
2005
).
30.
A.
Zijlstra
,
D. F.
Rivas
,
H. J. G. E.
Gardeniers
,
M.
Versluis
, and
D.
Lohse
,
Ultrasonics
56
,
512
523
(
2015
).
31.
M.
Kauer
,
V.
Belova-Magri
,
C.
Cairós
,
G.
Linka
, and
R.
Mettin
,
Ultrason. Sonochem.
48
,
39
50
(
2018
).
32.
C. T.
Avedisian
,
K.
Skyllingstad
,
R. C.
Cavicchi
,
C.
Lippe
, and
M. J.
Carrier
,
Energy Fuels
32
,
9971
9981
(
2018
).
33.
R. E.
Cavicchi
and
C. T.
Avedisian
,
Phys. Rev. Lett.
98
,
124501
(
2007
).
34.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
,
J. Comput. Phys.
100
,
335
354
(
1992
).
35.
D. A.
Hoang
,
V.
van Steijn
,
L. M.
Prtela
,
M. T.
Kreutzer
, and
C. R.
Kleijn
,
Comput. Fluids
86
,
28
36
(
2013
).
36.
S.
Hilgenfeldt
,
D.
Lohse
, and
M. P.
Brenner
,
Phys. Fluids
8
,
2808
2826
(
1996
).
37.
K.
Yasui
,
T.
Tuziuti
,
J.
Lee
,
T.
Kozuka
,
A.
Towata
, and
Y.
Iida
,
J. Chem. Phys.
128
,
184705
(
2008
).
38.
J. E.
Shepherd
and
B.
Sturtevant
,
J. Fluid Mech.
121
,
379
402
(
1982
).
39.
J. C.
Yang
,
G. S.
Jackson
, and
C. T.
Avedisian
,
Symp. Combust.
23
,
1619
1625
(
1991
).
40.
C. E.
Brennen
,
J. Fluid Mech.
472
,
153
166
(
2002
).
41.
A.
Esmaeeli
and
G.
Tryggvason
,
J. Sci. Comput.
19
,
163
182
(
2003
).
42.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
(
Oxford University Press
,
1995
).
43.
J.
Lee
and
G.
Son
,
Numer. Heat Transfer Part A
71
,
928
943
(
2017
).
You do not currently have access to this content.