This paper introduces the concept of spin–orbit-torque-magnetic random access memory (SOT-MRAM) based physical unclonable function (PUF). The secret of the PUF is stored into a random state of a matrix of perpendicular SOT-MRAMs. Here, we show experimentally and with micromagnetic simulations that this random state is driven by the intrinsic nonlinear dynamics of the free layer of the memory excited by the SOT. In detail, a large enough current drives the magnetization along an in-plane direction. Once the current is removed, the in-plane magnetic state becomes unstable evolving toward one of the two perpendicular stable configurations randomly. In addition, we propose a hybrid CMOS/spintronics model to simulate a PUF realized by an array of 16 × 16 SOT-MRAM cells and evaluate the electrical characteristics. Hardware authentication based on this PUF scheme has several characteristics, such as CMOS-compatibility, non-volatility (no power consumption in standby mode), reconfigurability (the secret can be reprogrammed), and scalability, which can move a step forward the design of spintronic devices for application in security.

1.
U.
Rührmair
,
S.
Devadas
, and
F.
Koushanfar
,
Security Based on Physical Unclonability and Disorder: Introduction to Hardware Security and Trust
(
Springer
,
New York
,
2012
), pp.
65
102
.
2.
C.
Herder
,
M. D.
Yu
,
F.
Koushanfar
, and
S.
Devadas
, “
Physical unclonable functions and applications: A tutorial
,”
Proc. IEEE.
102
(
8
),
1126
1141
(
2014
).
3.
U.
Rührmair
,
H.
Busch
, and
S.
Katzenbeisser
,
Strong PUFs: Models, Constructions, and Security Proofs
(
Springer
,
Berlin
,
2010
), pp.
79
96
.
4.
O.
Golonzka
 et al., in
2018 IEEE International Electron Devices Meeting
(IEDM, 2018), pp.
18.1.1
18.1.4
.
5.
A.
Raychowdhury
,
Nat. Electron.
1
(
12
),
618
619
(
2018
).
6.
S.
Khaleghi
,
P.
Vinella
,
S.
Banerjee
, and
W.
Rao
, in
Proceedings of the 2016 IEEE/ACM International Symposium on Nanoscale Architectures
(
NANOARCH
,
2016
), pp.
129
134
.
7.
A.
Iyengar
,
S.
Ghosh
,
K.
Ramclam
,
J.
Jang
, and
C.
Lin
,
ACM J. Emerg. Technol. Comput. Syst.
13
(
1
),
1
15
(
2016
).
8.
T.
Marukame
,
T.
Tanamoto
, and
Y.
Mitani
,
IEEE Trans. Magn.
50
(
11
),
1
4
(
2014
).
9.
A.
Fukushima
 et al.,
Appl. Phys. Express
7
, 083001 (
2014
).
10.
R.
De Rose
 et al.,
IEEE Trans. Circuits Syst. I Regul. Pap.
65
(
3
),
1086
1095
(
2018
).
11.
N.
Perrissin
 et al.,
Nanoscale
10
(
25
),
12187
12195
(
2018
).
12.
S.
Ikeda
 et al.,
Nat. Mater.
9
(
9
),
721
724
(
2010
).
13.
I. M.
Miron
 et al.,
Nature
476
(
7359
),
89
193
(
2011
).
14.
L.
Liu
,
C.-F.
Pai
,
Y.
Li
,
H. W.
Tseng
,
D. C.
Ralph
, and
R. A.
Buhrman
,
Science
336
(
6081
),
555
558
(
2012
).
15.
G.
Finocchio
,
M.
Carpentieri
,
E.
Martinez
, and
B.
Azzerboni
,
Appl. Phys. Lett.
102
(
21
),
212410
(
2013
).
16.
D.
Bhowmik
,
L.
You
, and
S.
Salahuddin
,
Nat. Nanotechnol.
9
(
1
),
59
63
(
2014
).
17.
V.
Puliafito
,
A.
Giordano
,
B.
Azzerboni
, and
G.
Finocchio
,
J. Phys. D Appl. Phys.
49
(
14
),
145001
(
2016
).
18.
R.
De Rose
 et al.,
IEEE Trans. Nanotechnol.
16
(
2
),
160
168
(
2017
).
19.
L.
Liu
,
O. J.
Lee
,
T. J.
Gudmundsen
,
D. C.
Ralph
, and
R. A.
Buhrman
,
Phys. Rev. Lett.
109
(
9
),
096602
(
2012
).
20.
J. C.
Slonczewski
,
J. Magn. Magn. Mater.
159
(
1–2
),
L1
L7
(
1996
).
21.
G.
Finocchio
,
I. N.
Krivorotov
,
X.
Cheng
,
L.
Torres
, and
B.
Azzerboni
,
Phys. Rev. B
83
(
13
),
134402
(
2011
).
22.
A.
Giordano
,
G.
Finocchio
,
L.
Torres
,
M.
Carpentieri
, and
B.
Azzerboni
,
J. Appl. Phys.
111
(
7
),
07D112
(
2012
).
23.
G.
Siracusano
 et al.,
Phys. Rev. Lett.
117
(
8
),
087204
(
2016
).
24.
L.
Zhang
 et al.,
Appl. Phys. Lett.
113
(
10
),
102401
(
2018
).
25.
C.-F.
Pai
,
L.
Liu
,
Y.
Li
,
H. W.
Tseng
,
D. C.
Ralph
, and
R. A.
Buhrman
,
Appl. Phys. Lett.
101
(
12
),
122404
(
2012
).
26.
M.
Carpentieri
 et al.,
IEEE Magn. Lett.
9
,
3102105
(
2018
).
27.
I. L.
Prejbeanu
,
S.
Bandiera
,
J.
Alvarez-Hérault
,
R. C.
Sousa
,
B.
Dieny
, and
J.-P.
Nozières
,
J. Phys. D Appl. Phys.
46
(
7
),
074002
(
2013
).
28.
J. G.
Alzate
 et al.,
Appl. Phys. Lett.
104
(
11
),
112410
(
2014
).
29.
S. Z.
Rahaman
 et al.,
IEEE Electron Device Lett.
39
(
9
),
1306
1309
(
2018
).
30.
S. Z.
Rahaman
 et al.,
IEEE J. Electron Devices Soc.
8
,
163
169
(
2020
).
31.
D.
Vodenicarevic
 et al.,
Phys. Rev. Appl.
8
(
5
),
054045
(
2017
).
32.
A.
Houshang
 et al.,
Nat. Commun.
9
(
1
),
4374
(
2018
).
33.
Z.
Wang
,
W.
Zhao
,
E.
Deng
,
J.-O.
Klein
, and
C.
Chappert
,
J. Phys. D Appl. Phys.
48
(
6
),
065001
(
2015
).
34.
L.
Zhang
,
K. Z.
Hui
,
C.
Chip-Hong
,
A.
Cabrini
, and
G.
Torelli
,
IEEE Trans. Inf. Forensics Secur.
9
(
6
),
921
932
(
2014
).
35.
A.
Chen
,
IEEE Electron Device Lett.
36
(
2
),
138
140
(
2015
).
You do not currently have access to this content.