We have investigated the impact of thermal annealing gaseous atmosphere of argon, nitrogen, and forming gas on the structural and optical properties of thin polycrystalline AlN films subjected to high-energy zirconium ions implantation. X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and atomic force microscopy measurements show that the structural and morphological properties of the Zr-implanted AlN films depend on the annealing gaseous environment. Post-implantation annealing under argon atmosphere yields the lowest structured surface roughness with increased grain size. Photoluminescence spectroscopy revealed multiple point defects and defect complexes related emission bands in the visible range. A series of absorption bands have been observed using photoluminescence excitation spectroscopy. The origin of the emission or absorption bands is identified and attributed to various types of point defects and defect complexes, theoretically reported for AlN. New emission and absorption peaks at 1.7eV(730nm) and 2.6eV(466nm), respectively, have been identified and attributed to the (ZrAl–VN)0 defect complexes.

1.
M. W.
Doherty
,
N. B.
Manson,
P.
Delaney
,
F.
Jelezko
,
J.
Wrachtrup
, and
L. C.
Hollenberg
, “
The nitrogen-vacancy colour centre in diamon
,”
Phys. Rep.
528
(
1
),
1
45
(
2013
).
2.
D. B.
Bucher
,
D. P. A.
Craik
,
M. P.
Backlund
,
M. J.
Turner
,
O. B.
Dor
,
D. R.
Glenn
 et al., “
Quantum diamond spectrometer for nanoscale NMR and ESR spectroscopy
,”
Nat. Protoc.
14
,
2707
2747
(
2019
).
3.
C. L.
Degen
,
F.
Reinhard
, and
P.
Cappellaro
, “
Quantum sensing
,”
Rev. Mod. Phys.
89
(
3
),
035002
(
2017
).
4.
L.
Childress
and
R.
Hanson
, “
Diamond NV centers for quantum computing and quantum networks
,”
MRS Bull.
38
(
2
),
134
138
(
2013
).
5.
T. N.
Oder
,
J.
Shakya
,
J. Y.
Lin
, and
H. X.
Jiang
, “
III-nitride photonic crystals
,”
Appl. Phys. Lett.
83
(
6
),
1231
1233
(
2003
).
6.
N.
Tansu
,
H.
Zhao
,
G.
Liu
,
X.-H.
Li
,
J.
Zhang
,
H.
Tong
 et al., “
III-nitride photonics
,”
IEEE Photonics J.
2
(
2
),
241
248
(
2010
).
7.
J.
Li
,
J. Y.
Lin
, and
H. X.
Jiang
, “
Growth of III-nitride photonic structures on large area silicon substrates
,”
Appl. Phys. Lett.
88
(
17
),
171909
(
2006
).
8.
S.
Strite
and
H.
Morkoç
, “
Gan, AlN, and InN: A review
,”
J. Vac. Sci. Technol. B
10
(
4
),
1237
1266
(
1992
).
9.
Y.
Taniyasu
,
M.
Kasu
, and
T.
Makimoto
, “
An aluminium nitride light-emitting diode with a wavelength of 210 nanometres
,”
Nature
441
(
7091
),
325
328
(
2006
).
10.
R. J.
Nemanich
,
P. K.
Baumann
,
M. C.
Benjamin
,
S. W.
King
,
J.
Van der Weide
, and
R. F.
Davis
, “
Negative electron affinity surfaces of aluminum nitride and diamond
,”
Diam. Relat. Mater.
5
(
6–8
),
790
796
(
1996
).
11.
M. C.
Benjamin
,
C.
Wang
,
R. F.
Davis
, and
R. J.
Nemanich
, “
Observation of a negative electron affinity for heteroepitaxial AlN on α (6H)-SiC (0001)
,”
Appl. Phys. Lett.
64
(
24
),
3288
3290
(
1994
).
12.
C. I.
Wu
,
A.
Kahn
,
E. S.
Hellman
, and
D. N. E.
Buchanan
, “
Electron affinity at aluminum nitride surfaces
,”
Appl. Phys. Lett.
73
(
10
),
1346
1348
(
1998
).
13.
R. B.
Karabalin
,
M. H.
Matheny
,
X. L.
Feng
,
E.
Defaÿ
,
G.
Le Rhun
,
C.
Marcoux
 et al., “
Piezoelectric nanoelectromechanical resonators based on aluminum nitride thin films
,”
Appl. Phys. Lett.
95
(
10
),
103111
(
2009
).
14.
Q.
Zhao
,
H.
Zhang
,
X.
Xu
,
Z.
Wang
,
J.
Xu
,
D.
Yu
 et al., “
Optical properties of highly ordered AlN nanowire arrays grown on sapphire substrate
,”
Appl. Phys. Lett.
86
(
19
),
193101
(
2005
).
15.
S.
Zhao
,
A. T.
Connie
,
M. H. T.
Dastjerdi
,
X. H.
Kong
,
Q.
Wang
,
M.
Djavid
 et al., “
Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources
,”
Sci. Rep.
5
,
8332
(
2015
).
16.
G.
Piazza
,
P. J.
Stephanou
, and
A. P.
Pisano
, “
Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators
,”
J. Microelectromech. Syst.
15
(
6
),
1406
1418
(
2006
).
17.
X.
Le
,
Y.
Liu
,
L.
Peng
,
J.
Pang
,
Z.
Xu
,
C.
Gao
, and
J.
Xie
, “
Surface acoustic wave humidity sensors based on uniform and thickness controllable graphene oxide thin films formed by surface tension
,”
Microsyst. Nanoeng.
5
(
1
),
1
10
(
2019
).
18.
C.
Xiong
,
W. H.
Pernice
, and
H. X.
Tang
, “
Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing
,”
Nano Lett.
12
(
7
),
3562
3568
(
2012
).
19.
H.
Seo
,
M.
Govoni
, and
G.
Galli
, “
Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies
,”
Sci. Rep.
6
(
1
),
1
10
(
2016
).
20.
H.
Seo
,
H.
Ma
,
M.
Govoni
, and
G.
Galli
, “
Designing defect-based qubit candidates in wide-gap binary semiconductors for solid-state quantum technologies
,”
Phys. Rev. Mater.
1
(
7
),
075002
(
2017
).
21.
J. B.
Varley
,
A.
Janotti
, and
C. G.
Van de Walle
, “
Defects in AlN as candidates for solid-state qubits
,”
Phys. Rev. B
93
(
16
),
161201
(
2016
).
22.
S. G.
Bishop
,
J. P.
Hadden
,
F. D.
Alzahrani
,
R.
Hekmati
,
D. L.
Huffaker
,
W. W.
Langbein
, and
A. J.
Bennett
, “
Room-temperature quantum emitter in aluminum nitride
,”
ACS Photonics
29
,
0c00528
(
2020
).
23.
W.
Wesch
,
E.
Wendler
,
G.
Götz
, and
N. P.
Kekelidse
, “
Defect production during ion implantation of various A III B V semiconductors
,”
J. Appl. Phys.
65
(
2
),
519
526
(
1989
).
24.
K.
Lorenz
and
R.
Vianden
, “
Defect recovery in AlN and InN after heavy Ion implantation
,”
Phys. Status Solidi C
0
(
1
),
413
416
(
2003
).
25.
E.
Wendler
,
W.
Wesch
, and
G.
Götz
, “
Defects in weakly damaged Ion-implanted GaAs and other III–V semiconductors
,”
Phys. Status Solidi A
112
(
1
),
289
299
(
1989
).
26.
S. M. C.
Miranda
,
P.
Kessler
,
J. G.
Correia
,
R.
Vianden
,
K.
Johnston
,
E.
Alves
 et al., “
Ion implantation of Cd and Ag into AlN and GaN
,”
Phys. Status Solidi C
9
(
3–4
),
1060
1064
(
2012
).
27.
M.
Borowski
,
A.
Traverse
, and
J. P.
Dallas
, “
Structural characterization of Ti implanted A1 N
,”
J. Mater. Res.
10
(
12
),
3136
(
1995
).
28.
M.
Kanechika
and
T.
Kachi
, “
n-type AlN layer by Si ion implantation
,”
Appl. Phys. Lett.
88
(
20
),
202106
(
2006
).
29.
S. M. C.
Miranda
,
N.
Franco
,
E.
Alves
, and
K.
Lorenz
, “
Cd ion implantation in AlN
,”
Nucl. Instrum. Methods Phys. Res. Sect. B
289
,
43
46
(
2012
).
30.
J. F.
Ziegler
and
J. P.
Biersack
,
Stopping and Range of Ions in Matter
(
Pergamon
,
New York
,
1985
).
31.
M.
Chicoine
,
F.
Schiettekatte
,
M. I.
Laitinen
, and
T.
Sajavaara
, “
Oxy-nitrides characterization with a new ERD-TOF system
,”
Nucl. Instrum. Methods Phys. Res. Sect. B
406
,
112
114
(
2017
).
32.
F.
Schiettekatte
,
M.
Chicoine
,
S.
Gujrathi
,
P.
Wei
, and
K.
Oxorn
, “
Allegria: A new interface to the ERD program
,”
Nucl. Instrum. Methods Phys. Res. Sect. B
219
,
125
129
(
2004
).
33.
S.
Khan
,
M.
Shahid
,
A.
Mahmood
,
A.
Shah
,
I.
Ahmed
,
M.
Mehmood
 et al., “
Texture of the nano-crystalline AlN thin films and the growth conditions in DC magnetron sputtering
,”
Prog. Nat. Sci. Mater. Int.
25
(
4
),
282
290
(
2015
).
34.
D.
Nilsson
,
E.
Janzén
, and
A.
Kakanakova-Georgieva
, “
Lattice parameters of AlN bulk, homoepitaxial and heteroepitaxial material
,”
J. Phys. Appl. Phys.
49
(
17
),
175108
(
2016
).
35.
J. X.
Zhang
,
H.
Cheng
,
Y. Z.
Chen
,
A.
Uddin
,
S.
Yuan
,
S. J.
Geng
 et al., “
Growth of AlN films on Si (100) and Si (111) substrates by reactive magnetron sputtering
,”
Surf. Coat. Technol.
198
(
1-3
),
68
73
(
2005
).
36.
W.
Wang
,
W.
Yang
,
Z.
Liu
,
H.
Wang
,
L.
Wen
, and
G.
Li
, “
Interfacial reaction control and its mechanism of AlN epitaxial films grown on Si(111) substrates by pulsed laser deposition
,”
Sci. Rep.
5
(
1
),
11480
(
2015
).
37.
B.
Pipeleers
,
S. M.
Hogg
, and
A.
Vantomme
, “
Defect accumulation during channeled erbium implantation into GaN
,”
J. Appl. Phys.
98
(
12
),
123504
(
2005
).
38.
T.
Prokofyeva
,
M.
Seon
,
J.
Vanbuskirk
,
M.
Holtz
,
S. A.
Nikishin
,
N. N.
Faleev
 et al., “
Vibrational properties of AlN grown on (111)-oriented silicon
,”
Phys. Rev. B
63
(
12
),
125313
(
2001
).
39.
V.
Lughi
and
D. R.
Clarke
, “
Defect and stress characterization of AlN films by Raman spectroscopy
,”
Appl. Phys. Lett.
89
(
24
),
241911
(
2006
).
40.
P.
Yogi
,
S. K.
Saxena
,
S.
Mishra
,
V.
Mishra
,
H. M.
Rai
,
R.
Late
 et al., “
Interplay between phonon confinement and fano effect on Raman line shape for semiconductor nanostructures: Analytical study
,”
Solid State Commun.
230
,
25
29
(
2016
).
41.
Y.
Gao
and
P.
Yin
, “
Origin of asymmetric broadening of Raman peak profiles in Si nanocrystals
,”
Sci. Rep.
7
(
1
),
43602
(
2017
).
42.
L.
Bergman
,
D.
Alexson
,
P. L.
Murphy
,
R. J.
Nemanich
,
M.
Dutta
,
M. A.
Stroscio
 et al., “
Raman analysis of phonon lifetimes in AlN and GaN of wurtzite structure
,”
Phys. Rev. B
59
(
20
),
12977
12982
(
1999
).
43.
J.
Wang
,
D.
Chen
,
Y.
Xu
,
Q.
Liu
, and
L.
Zhang
, “
Influence of the crystal texture on Raman spectroscopy of the AlN films prepared by pulse laser deposition
,”
J. Spectrosc.
2013
,
1
6
.
44.
M.
Kuball
,
J. M.
Hayes
,
A. D.
Prins
,
N. W. A
Van Uden
,
D. J.
Dunstan
,
Y.
Shi
 et al., “
Raman scattering studies on single-crystalline bulk AlN under high pressures
,”
Appl. Phys. Lett.
78
(
6
),
724
726
(
2001
).
45.
M. S.
Liu
,
K. W.
Nugent
,
S.
Prawer
,
L. A.
Bursill
,
J. L.
Peng
,
Y. Z.
Tong
 et al., “
Micro-Raman scattering properties of highly oriented AlN films
,”
Int. J. Mod. Phys. B
12
(
19
),
1963
1974
(
1998
).
46.
L. E.
McNeil
,
M.
Grimsditch
, and
R. H.
French
, “
Vibrational spectroscopy of aluminum nitride
,”
J. Am. Ceram. Soc.
76
(
5
),
1132
1136
(
1993
).
47.
S.
Roorda
,
W. C.
Sinke
,
J. M.
Poate
,
D. C.
Jacobson
,
S.
Dierker
,
B. S.
Dennis
 et al., “
Structural relaxation and defect annihilation in pure amorphous silicon
,”
Phys. Rev. B
44
(
8
),
3702
3725
(
1991
).
48.
L. K.
Béland
,
Y.
Anahory
,
D.
Smeets
,
M.
Guihard
,
P.
Brommer
,
J.-F.
Joly
 et al., “
Replenish and relax: Explaining logarithmic annealing in Ion-implanted c-Si
,”
Phys. Rev. Lett.
111
(
10
),
105502
(
2013
).
49.
T.
Nagashima
,
Y.
Kubota
,
T.
Kinoshita
,
Y.
Kumagai
,
J.
Xie
,
R.
Collazo
 et al., “
Structural and optical properties of carbon-doped AlN substrates grown by hydride vapor phase epitaxy using AlN substrates prepared by physical vapor transport
,”
Appl. Phys. Express
5
(
12
),
125501
(
2012
).
50.
B. E.
Gaddy
,
Z.
Bryan
,
I.
Bryan
,
J.
Xie
,
R.
Dalmau
,
B.
Moody
 et al., “
The role of the carbon-silicon complex in eliminating deep ultraviolet absorption in AlN
,”
Appl. Phys. Lett.
104
(
20
),
202106
(
2014
).
51.
R.
Collazo
,
J.
Xie
,
B. E.
Gaddy
,
Z.
Bryan
,
R.
Kirste
,
M.
Hoffmann
 et al., “
On the origin of the 265 nm absorption band in AlN bulk crystals
,”
Appl. Phys. Lett.
100
(
19
),
191914
(
2012
).
52.
K.
Laaksonen
,
M. G.
Ganchenkova
, and
R. M.
Nieminen
, “
Vacancies in wurtzite GaN and AlN
,”
J. Phys. C Solid State Phys.
21
(
1
),
015803
(
2009
).
53.
T.
Schulz
,
M.
Albrecht
,
K.
Irmscher
,
C.
Hartmann
,
J.
Wollweber
, and
R.
Fornari
, “
Ultraviolet luminescence in AlN
,”
Phys. Status Solidi B
248
(
6
),
1513
1518
(
2011
).
54.
D. M.
Spiridonov
,
I. A.
Weinstein
,
A. S.
Vokhmintsev
, and
A. R.
Beketov
, “
Cathodoluminescence of oxygen-vacancy centers in structures of aluminum nitride
,”
Bull. Russ. Acad. Sci. Phys.
79
(
2
),
211
214
(
2015
).
55.
M.
Kazan
,
B.
Rufflé
,
C.
Zgheib
, and
P.
Masri
, “
Oxygen behavior in aluminum nitride
,”
J. Appl. Phys.
98
(
10
),
103529
(
2005
).
56.
T.
Mattila
and
R. M.
Nieminen
, “
Ab initio study of oxygen point defects in GaAs, GaN, and AlN
,”
Phys. Rev. B
54
(
23
),
16676
(
1996
).
57.
G. A.
Slack
,
L. J.
Schowalter
,
D.
Morelli
, and
J. A.
Freitas,
 Jr.
, “
Some effects of oxygen impurities on AlN and GaN
,”
J. Cryst. Growth
246
(
3–4
),
287
298
(
2002
).
58.
A.
Uedono
,
S.
Ishibashi
,
S.
Keller
,
C.
Moe
,
P.
Cantu
,
T. M.
Katona
 et al., “
Vacancy-oxygen complexes and their optical properties in AlN epitaxial films studied by positron annihilation
,”
J. Appl. Phys.
105
(
5
),
054501
(
2009
).
59.
Q.
Yan
,
A.
Janotti
,
M.
Scheffler
, and
C. G.
Van de Walle
, “
Origins of optical absorption and emission lines in AlN
,”
Appl. Phys. Lett.
105
(
11
),
111104
(
2014
).
60.
A.
Sedhain
,
L.
Du
,
J. H.
Edgar
,
J. Y.
Lin
, and
H. X.
Jiang
, “
The origin of 2.78 eV emission and yellow coloration in bulk AlN substrates
,”
Appl. Phys. Lett.
95
(
26
),
262104
(
2009
).
61.
H.
Hu
,
X.
Ji
,
Z.
Wu
,
P.
Yan
,
H.
Zhou
,
S.
Du
 et al., “
Synthesis and photoluminescence of AlN: Mn hexagonal maze-like complex nanostructure
,”
Mater. Lett.
70
,
34
36
(
2012
).
62.
Y.
Tang
,
H.
Cong
,
F.
Li
, and
H.-M.
Cheng
, “
Synthesis and photoluminescent property of AlN nanobelt array
,”
Diam. Relat. Mater.
16
(
3
),
537
541
(
2007
).
63.
M.
Lamprecht
,
V. N.
Jmerik
,
R.
Collazo
,
Z.
Sitar
,
S. V.
Ivanov
, and
K.
Thonke
, “
Model for the deep defect-related emission bands between 1.4 and 2.4 eV in AlN: Deep defect-related emission bands between 1.4 and 2.4 eV
,”
Phys. Status Solidi B
254
(
8
),
1600714
(
2017
).
You do not currently have access to this content.