We have investigated the impact of thermal annealing gaseous atmosphere of argon, nitrogen, and forming gas on the structural and optical properties of thin polycrystalline AlN films subjected to high-energy zirconium ions implantation. X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and atomic force microscopy measurements show that the structural and morphological properties of the Zr-implanted AlN films depend on the annealing gaseous environment. Post-implantation annealing under argon atmosphere yields the lowest structured surface roughness with increased grain size. Photoluminescence spectroscopy revealed multiple point defects and defect complexes related emission bands in the visible range. A series of absorption bands have been observed using photoluminescence excitation spectroscopy. The origin of the emission or absorption bands is identified and attributed to various types of point defects and defect complexes, theoretically reported for AlN. New emission and absorption peaks at and , respectively, have been identified and attributed to the (ZrAl–VN)0 defect complexes.
Skip Nav Destination
Article navigation
28 December 2020
Research Article|
December 22 2020
Engineering visible light emitting point defects in Zr-implanted polycrystalline AlN films
A. Aghdaei
;
A. Aghdaei
1
Département de physique, Regroupement québécois sur les matériaux de pointe, Faculté des sciences, Université de Sherbrooke
, Québec J1 K 2R1, Canada
2
Institut quantique, Université de Sherbrooke
, Québec J1 K 2R1, Canada
3
Institut Interdisciplinaire d’Innovation Technologique (3IT)
and Laboratoire Nanotechnologies Nanosystèmes (LN2)
, CNRS UMI-3463, Université de Sherbrooke
, 3000 Blvd. Université, Sherbrooke, Québec, Canada
Search for other works by this author on:
R. Pandiyan;
R. Pandiyan
3
Institut Interdisciplinaire d’Innovation Technologique (3IT)
and Laboratoire Nanotechnologies Nanosystèmes (LN2)
, CNRS UMI-3463, Université de Sherbrooke
, 3000 Blvd. Université, Sherbrooke, Québec, Canada
Search for other works by this author on:
B. Ilahi
;
B. Ilahi
1
Département de physique, Regroupement québécois sur les matériaux de pointe, Faculté des sciences, Université de Sherbrooke
, Québec J1 K 2R1, Canada
2
Institut quantique, Université de Sherbrooke
, Québec J1 K 2R1, Canada
3
Institut Interdisciplinaire d’Innovation Technologique (3IT)
and Laboratoire Nanotechnologies Nanosystèmes (LN2)
, CNRS UMI-3463, Université de Sherbrooke
, 3000 Blvd. Université, Sherbrooke, Québec, Canada
Search for other works by this author on:
M. Chicoine;
M. Chicoine
4
Département de Physique, Regroupement québécois sur les matériaux de pointe, Université de Montréal
, C.P. 6128, Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
Search for other works by this author on:
M. El Gowini;
M. El Gowini
5
Teledyne DALSA Semiconducteur
, Bromont, Québec J2L 1S7, Canada
Search for other works by this author on:
F. Schiettekatte;
F. Schiettekatte
4
Département de Physique, Regroupement québécois sur les matériaux de pointe, Université de Montréal
, C.P. 6128, Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
Search for other works by this author on:
L. G. Fréchette
;
L. G. Fréchette
3
Institut Interdisciplinaire d’Innovation Technologique (3IT)
and Laboratoire Nanotechnologies Nanosystèmes (LN2)
, CNRS UMI-3463, Université de Sherbrooke
, 3000 Blvd. Université, Sherbrooke, Québec, Canada
Search for other works by this author on:
D. Morris
D. Morris
a)
1
Département de physique, Regroupement québécois sur les matériaux de pointe, Faculté des sciences, Université de Sherbrooke
, Québec J1 K 2R1, Canada
2
Institut quantique, Université de Sherbrooke
, Québec J1 K 2R1, Canada
3
Institut Interdisciplinaire d’Innovation Technologique (3IT)
and Laboratoire Nanotechnologies Nanosystèmes (LN2)
, CNRS UMI-3463, Université de Sherbrooke
, 3000 Blvd. Université, Sherbrooke, Québec, Canada
a)Author to whom correspondence should be addressed: Denis.Morris@USherbrooke.ca
Search for other works by this author on:
a)Author to whom correspondence should be addressed: Denis.Morris@USherbrooke.ca
J. Appl. Phys. 128, 245701 (2020)
Article history
Received:
September 21 2020
Accepted:
December 01 2020
Citation
A. Aghdaei, R. Pandiyan, B. Ilahi, M. Chicoine, M. El Gowini, F. Schiettekatte, L. G. Fréchette, D. Morris; Engineering visible light emitting point defects in Zr-implanted polycrystalline AlN films. J. Appl. Phys. 28 December 2020; 128 (24): 245701. https://doi.org/10.1063/5.0030221
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Pay-Per-View Access
$40.00
Citing articles via
A step-by-step guide to perform x-ray photoelectron spectroscopy
Grzegorz Greczynski, Lars Hultman
Selecting alternative metals for advanced interconnects
Jean-Philippe Soulié, Kiroubanand Sankaran, et al.
Explainable artificial intelligence for machine learning prediction of bandgap energies
Taichi Masuda, Katsuaki Tanabe
Related Content
Texture development and magnetoresistance properties of Co Fe B ∕ Mg O ∕ Co Fe B -based magnetic tunnel junction depending on capping layer crystallinity
J. Appl. Phys. (March 2008)
Reliability of Al 2 O 3 -doped ZrO 2 high- k dielectrics in three-dimensional stacked metal-insulator-metal capacitors
J. Appl. Phys. (December 2010)
High temperature phase decomposition in TixZryAlzN
AIP Advances (December 2014)
Zr-Al 16 wt. % and Na2CrO4 composite particles used for Na dispenser and its reaction kinetic
J. Vac. Sci. Technol. B (August 2022)