The Co2 family of ferromagnetic Heusler alloys has attracted interest due to their fully spin-polarized nature, making them ideal for applications in spintronic devices. More recently, the existence of room temperature time-reversal-breaking Weyl nodes near the Fermi level was predicted and confirmed in these systems. As a result of the presence of these Weyl nodes, these systems possess a non-zero momentum space Berry curvature that can dramatically influence transport properties such as the anomalous Hall effect. One of these candidate compounds is Co2TiGe. Recently, high-quality molecular beam epitaxy-grown thin films of Co2TiGe have become available. In this work, we present a THz-range measurement of MBE-grown Co2TiGe films. We measure the THz-range Faraday rotation, which can be understood as a measure of the anomalous Hall effect. We supplement this work with electronic band-structure calculations showing that the principal contribution to the anomalous Hall effect in this material stems from the Berry curvature of the material. Our work shows that this class of Heusler materials shows promise for Weyl semimetal based spintronics.

1.
N. P.
Armitage
,
E. J.
Mele
, and
A.
Vishwanath
, “
Weyl and Dirac semimetals in three-dimensional solids
,”
Rev. Mod. Phys.
90
,
015001
(
2018
).
2.
A. A.
Burkov
, “
Weyl metals
,”
Annu. Rev. Condens. Matter Phys.
9
,
359
378
(
2017
).
3.
S.-Y.
Xu
,
I.
Belopolski
,
N.
Alidoust
,
M.
Neupane
,
G.
Bian
,
C.
Zhang
,
R.
Sankar
,
G.
Chang
,
Z.
Yuan
,
C.-C.
Lee
,
S.-M.
Huang
,
H.
Zheng
,
J.
Ma
,
D. S.
Sanchez
,
B.
Wang
,
A.
Bansil
,
F.
Chou
,
P. P.
Shibayev
,
H.
Lin
,
S.
Jia
, and
M. Z.
Hasan
, “
Discovery of a Weyl fermion semimetal and topological Fermi arcs
,”
Science
349
,
613
617
(
2015
).
4.
B. Q.
Lv
,
H. M.
Weng
,
B. B.
Fu
,
X. P.
Wang
,
H.
Miao
,
J.
Ma
,
P.
Richard
,
X. C.
Huang
,
L. X.
Zhao
,
G. F.
Chen
,
Z.
Fang
,
X.
Dai
,
T.
Qian
, and
H.
Ding
,
Phys. Rev. X
5
,
031013
(
2015
).
5.
C.
Felser
and
B.
Hillebrands
, “
New materials with high spin polarization: Half-metallic Heusler compounds
,”
J. Phys. D: Appl. Phys.
40
,
E01
(
2007
).
6.
J.
Winterlik
,
G. H.
Fecher
,
A.
Thomas
, and
C.
Felser
, “
Superconductivity in palladium-based Heusler compounds
,”
Phys. Rev. B
79
,
064508
(
2009
).
7.
S.
Sakurada
and
N.
Shutoh
, “
Effect of Ti substitution on the thermoelectric properties of (Zr, Hf)NiSn half-Heusler compounds
,”
Appl. Phys. Lett.
86
,
082105
(
2005
).
8.
C.
Felser
,
L.
Wollmann
,
S.
Chadov
,
G. H.
Fecher
, and
S. S. P.
Parkin
, “
Basics and prospective of magnetic Heusler compounds
,”
APL Mater.
3
,
041518
(
2015
).
9.
S.
Chadov
,
X.
Qi
,
J.
Kübler
,
G. H.
Fecher
,
C.
Felser
, and
S. C.
Zhang
, “
Tunable multifunctional topological insulators in ternary Heusler compounds
,”
Nat. Mater.
9
,
541
545
(
2010
).
10.
S.
Wurmehl
,
G. H.
Fecher
,
H. C.
Kandpal
,
V.
Ksenofontov
,
C.
Felser
, and
H.-J.
Lin
, “
Investigation of Co2FeSi: The Heusler compound with highest Curie temperature and magnetic moment
,”
Appl. Phys. Lett.
88
,
032503
(
2006
).
11.
G. H.
Fecher
,
H. C.
Kandpal
,
S.
Wurmehl
,
C.
Felser
, and
G.
Schönhense
, “
Slater-Pauling rule and Curie temperature of Co2-based Heusler compounds
,”
J. Appl. Phys.
99
,
08J106
(
2006
).
12.
B.
Joachim
,
G. H.
Fecher
,
B.
Benjamin
,
G.
Tanja
,
S.
Andrey
,
W.
Anke
,
K.
Peter
,
K.
Michael
,
E.
Hans-Joachim
,
Y.
Hideki
,
U.
Shigenori
,
K.
Keisuke
, and
F.
Claudia
, “
Anomalous transport properties of the half-metallic ferromagnets Co2TiSi, Co2TiGe and Co2TiSn
,”
Philos. Trans. R. Soc. A
369
,
3588
3601
(
2011
).
13.
S. C.
Lee
,
T. D.
Lee
,
P.
Blaha
, and
K.
Schwarz
, “
Magnetic and half-metallic properties of the full-Heusler alloys Co2TiX(X=Al, Ga;Si, Ge, Sn;Sb)
,”
J. Appl. Phys.
97
,
10C307
(
2005
).
14.
H. C.
Kandpal
,
G. H.
Fecher
, and
C.
Felser
, “
Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds
,”
J. Phys. D: Appl. Phys.
40
,
1507
1523
(
2007
).
15.
G.
Chang
,
S.-Y.
Xu
,
H.
Zheng
,
B.
Singh
,
C.-H.
Hsu
,
G.
Bian
,
N.
Alidoust
,
I.
Belopolski
,
D. S.
Sanchez
,
S.
Zhang
,
H.
Lin
, and
M. Z.
Hasan
, “
Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co2TiX (X=Si, Ge, or Sn)
,”
Sci. Rep.
6
,
38839
(
2016
).
16.
Z.
Wang
,
M. G.
Vergniory
,
S.
Kushwaha
,
M.
Hirschberger
,
E. V.
Chulkov
,
A.
Ernst
,
N. P.
Ong
,
R. J.
Cava
, and
B. A.
Bernevig
, “
Time-reversal-breaking Weyl fermions in magnetic Heusler alloys
,”
Phys. Rev. Lett.
117
,
236401
(
2016
).
17.
I.
Belopolski
,
K.
Manna
,
D. S.
Sanchez
,
G.
Chang
,
B.
Ernst
,
J.
Yin
,
S. S.
Zhang
,
T.
Cochran
,
N.
Shumiya
,
H.
Zheng
,
B.
Singh
,
G.
Bian
,
D.
Multer
,
M.
Litskevich
,
X.
Zhou
,
S.-M.
Huang
,
B.
Wang
,
T.-R.
Chang
,
S.-Y.
Xu
,
A.
Bansil
,
C.
Felser
,
H.
Lin
, and
M. Z.
Hasan
, “
Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet
,”
Science
365
,
1278
1281
(
2019
).
18.
A.
Burkov
, “
Anomalous Hall effect in Weyl metals
,”
Phys. Rev. Lett.
113
,
187202
(
2014
).
19.
N.
Nagaosa
,
J.
Sinova
,
S.
Onoda
,
A. H.
MacDonald
, and
N. P.
Ong
, “
Anomalous Hall effect
,”
Rev. Mod. Phys.
82
,
1539
1592
(
2010
).
20.
J. A.
Logan
,
T. L.
Brown-Heft
,
S. D.
Harrington
,
N. S.
Wilson
,
A. P.
McFadden
,
A. D.
Rice
,
M.
Pendharkar
, and
C. J.
Palmstrøm
, “
Growth, structural, and magnetic properties of single-crystal full-Heusler Co2TiGe thin films
,”
J. Appl. Phys.
121
,
213903
(
2017
).
21.
C. M.
Morris
,
R. V.
Aguilar
,
A. V.
Stier
, and
N. P.
Armitage
, “
Polarization modulation time-domain terahertz polarimetry
,”
Opt. Express
20
,
12303
12317
(
2012
).
22.
N.
Armitage
, “
Constraints on Jones transmission matrices from time-reversal invariance and discrete spatial symmetries
,”
Phys. Rev. B
90
,
035135
(
2014
).
23.
P.
Giannozzi
,
O.
Baseggio
,
P.
Bonfà
,
D.
Brunato
,
R.
Car
,
I.
Carnimeo
,
C.
Cavazzoni
,
S.
de Gironcoli
,
P.
Delugas
,
F.
Ferrari Ruffino
,
A.
Ferretti
,
N.
Marzari
,
I.
Timrov
,
A.
Urru
, and
S.
Baroni
, “
Quantum ESPRESSO toward the exascale
,”
J. Chem. Phys.
152
,
154105
(
2020
).
24.
P.
Giannozzi
,
O.
Andreussi
,
T.
Brumme
,
O.
Bunau
,
M. B.
Nardelli
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
M.
Cococcioni
,
N.
Colonna
,
I.
Carnimeo
,
A. D.
Corso
,
S. D.
Gironcoli
,
P.
Delugas
,
R. A.
DiStasio
,
A.
Ferretti
,
A.
Floris
,
G.
Fratesi
,
G.
Fugallo
,
R.
Gebauer
,
U.
Gerstmann
,
F.
Giustino
,
T.
Gorni
,
J.
Jia
,
M.
Kawamura
,
H.-Y.
Ko
,
A.
Kokalj
,
E.
Küçükbenli
,
M.
Lazzeri
,
M.
Marsili
,
N.
Marzari
,
F.
Mauri
,
N. L.
Nguyen
,
H.-V.
Nguyen
,
A.
Otero-de-la Roza
,
L.
Paulatto
,
S.
Poncé
,
D.
Rocca
,
R.
Sabatini
,
B.
Santra
,
M.
Schlipf
,
A. P.
Seitsonen
,
A.
Smogunov
,
I.
Timrov
,
T.
Thonhauser
,
P.
Umari
,
N.
Vast
,
X.
Wu
, and
S.
Baroni
, “
Advanced capabilities for materials modelling with Quantum ESPRESSO
,”
J. Phys.: Condens. Matter
29
,
465901
(
2017
).
25.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A. D.
Corso
,
S. D.
Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
, “
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
26.
G.
Pizzi
,
V.
Vitale
,
R.
Arita
,
S.
Blügel
,
F.
Freimuth
,
G.
Géranton
,
M.
Gibertini
,
D.
Gresch
,
C.
Johnson
,
T.
Koretsune
,
J.
Ibañnez-Azpiroz
,
H.
Lee
,
J.-M.
Lihm
,
D.
Marchand
,
A.
Marrazzo
,
Y.
Mokrousov
,
J. I.
Mustafa
,
Y.
Nohara
,
Y.
Nomura
,
L.
Paulatto
,
S.
Poncé
,
T.
Ponweiser
,
J.
Qiao
,
F.
Thöle
,
S. S.
Tsirkin
,
M.
Wierzbowska
,
N.
Marzari
,
D.
Vanderbilt
,
I.
Souza
,
A. A.
Mostofi
, and
J. R.
Yates
, “
Wannier90 as a community code: New features and applications
,”
J. Phys.: Condens. Matter
32
,
165902
(
2020
).
You do not currently have access to this content.