Metal–oxide–metal devices based on amorphous VOx are shown to exhibit one of two distinct negative differential resistance (NDR) characteristics depending on the maximum current employed for electroforming. For low compliance currents they exhibit a smooth S-type characteristic and have a temperature-dependent device resistance characterized by an activation energy of 0.25 eV, consistent with conduction in polycrystalline VO2, while for high compliance currents they exhibit an abrupt snap-back characteristic and a resistance characterized by an activation energy of 0.025 eV, consistent with conduction in oxygen deficient VOx. In both cases, the temperature dependence of the switching voltage implies that the conductivity change is due to the insulator–metal transition in VO2. From this analysis, it is concluded that electroforming at low currents creates a conductive filament comprised largely of polycrystalline VO2, while electroforming at high currents creates a composite structure comprised of VO2 and a conductive halo of oxygen deficient VOx. The effect of electroforming on the NDR mode is then explained with reference to a lumped element model of filamentary conduction that includes the effect of a parallel resistance created by the halo. These results provide new insight into the NDR response of vanadium-oxide-based devices and a basis for designing devices with specific characteristics.

1.
M. D.
Pickett
,
G.
Medeiros-Ribeiro
, and
R. S.
Williams
,
Nat. Mater.
12
(
2
),
114
(
2013
).
2.
R.
Tobe
,
M. S.
Mian
, and
K.
Okimura
,
J. Appl. Phys.
127
(
19
),
195103
(
2020
).
3.
A.
Velichko
,
M.
Belyaev
,
V.
Putrolaynen
,
A.
Pergament
, and
V.
Perminov
,
Int. J. Mod. Phys. B
31
(
2
),
1650261
(
2017
).
4.
N.
Shukla
,
W.-Y.
Tsai
,
M.
Jerry
,
M.
Barth
,
V.
Narayanan
, and
S.
Datta
, in
2016 IEEE Symposium on VLSI Technology
(IEEE, 2016).
5.
C.
Nauenheim
,
C.
Kuegeler
,
A.
Ruediger
, and
R.
Waser
,
Appl. Phys. Lett.
96
(
12
),
122902
(
2010
).
6.
D. V.
Morgan
,
M. J.
Howes
,
R. D.
Pollard
, and
D. G. P.
Waters
,
Thin Solid Films
15
(
1
),
123
131
(
1973
).
7.
M.
Son
,
X.
Liu
,
S. M.
Sadaf
,
D.
Lee
,
S.
Park
,
W.
Lee
,
S.
Kim
,
J.
Park
,
J.
Shin
,
S.
Jung
,
M.
Ham
, and
H.
Hwang
,
IEEE Electron Device Lett.
33
(
5
),
718
720
(
2012
).
8.
S. K.
Nandi
,
S. K.
Nath
,
A. E.
El-Helou
,
S.
Li
,
T.
Ratcliff
,
M.
Uenuma
,
P. E.
Raad
, and
R. G.
Elliman
,
ACS Appl. Mater. Interfaces
12
,
8422
(
2020
).
9.
C. N.
Berglund
,
IEEE Trans. Electron Devices
16
(
5
),
432
437
(
1969
).
10.
S. K.
Nandi
,
S. K.
Nath
,
A. E.
El-Helou
,
S.
Li
,
X.
Liu
,
P. E.
Raad
, and
R. G.
Elliman
,
Adv. Funct. Mater.
29
(
50
),
1906731
(
2019
).
11.
J. M.
Goodwill
and
M.
Skowronski
,
J. Appl. Phys.
126
(
3
),
035108
(
2019
).
12.
X.
Zhou
,
D.
Gu
,
Y.
Li
,
H.
Qin
,
Y.
Jiang
, and
J.
Xu
,
Nanoscale
11
(
45
),
22070
22078
(
2019
).
13.
L.
Shuai
,
L.
Xinjun
,
N.
Sanjoy Kumar
, and
E.
Robert Glen
,
Nanotechnology
29
(
37
),
375705
(
2018
).
14.
S. K.
Nandi
,
X.
Liu
,
D. K.
Venkatachalam
, and
R. G.
Elliman
,
Appl. Phys. Lett.
107
(
13
),
132901
(
2015
).
15.
Y.
Sharma
,
J.
Balachandran
,
C.
Sohn
,
J. T.
Krogel
,
P.
Ganesh
,
L.
Collins
,
A. V.
Ievlev
,
Q.
Li
,
X.
Gao
, and
N.
Balke
,
ACS Nano
12
(
7
),
7159
7166
(
2018
).
16.
S.
Li
,
X.
Liu
,
S. K.
Nandi
,
S. K.
Nath
, and
R. G.
Elliman
,
Adv. Funct. Mater.
29
,
1905060
(
2019
).
17.
S.
Kumar
,
J. P.
Strachan
, and
R. S.
Williams
,
Nature
548
(
7667
),
318
(
2017
).
18.
S. K.
Nath
,
S. K.
Nandi
,
S.
Li
, and
R. G.
Elliman
,
Appl. Phys. Lett.
114
(
6
),
062901
(
2019
).
19.
M.
Vos
,
X.
Liu
,
P. L.
Grande
,
S. K.
Nandi
,
D. K.
Venkatachalam
, and
R. G.
Elliman
,
Nucl. Instrum. Methods Phys. Res. Sect. B
340
,
58
62
(
2014
).
20.
M. S.
Mian
,
K.
Okimura
, and
J.
Sakai
,
J. Appl. Phys.
117
(
21
),
215305
(
2015
).
21.
G.
Seo
,
B.-J.
Kim
,
H.-T.
Kim
, and
Y. W.
Lee
,
Curr. Appl. Phys.
14
(
9
),
1251
1256
(
2014
).
22.
D.
Li
,
A. A.
Sharma
,
N.
Shukla
,
H.
Paik
,
J. M.
Goodwill
,
S.
Datta
,
D. G.
Schlom
,
J. A.
Bain
, and
M.
Skowronski
,
Nanotechnology
28
(
40
),
405201
(
2017
).
23.
G. A.
Gibson
,
Adv. Funct. Mater.
28
(
22
),
1704175
(
2018
).
24.
D.
Ielmini
and
Y.
Zhang
,
J. Appl. Phys.
102
(
5
),
054517
(
2007
).
25.
J. A. J.
Rupp
,
M.
Querré
,
A.
Kindsmüller
,
M.-P.
Besland
,
E.
Janod
,
R.
Dittmann
,
R.
Waser
, and
D. J.
Wouters
,
J. Appl. Phys.
123
(
4
),
044502
(
2018
).
26.
F.
Chudnovskii
,
Zh. Tekh. Fiz.
45
,
1561
1583
(
1975
).
27.
A.
Bugaev
,
B.
Zakharchenia
, and
F.
Chudnovskii
, The metal-semiconductor phase transition and its application (
Leningrad Izdatel Nauka
,
1979
).
28.
K.
Okimura
,
N.
Hanis Azhan
,
T.
Hajiri
,
S.-i.
Kimura
,
M.
Zaghrioui
, and
J.
Sakai
,
J. Appl. Phys.
115
(
15
),
153501
(
2014
).
29.
V. A.
Blagojević
,
N.
Obradović
,
N.
Cvjetićanin
, and
D. M.
Minić
,
Sci. Sintering
45
(
3
),
305
311
(
2013
).
30.
M. J.
Tadjer
,
V. D.
Wheeler
,
B. P.
Downey
,
Z. R.
Robinson
,
D. J.
Meyer
,
C. R.
Eddy
, Jr.
, and
F. J.
Kub
,
Solid State Electron.
136
,
30
35
(
2017
).
31.
X.
Liu
,
S. K.
Nandi
,
D. K.
Venkatachalam
,
S.
Li
,
K.
Belay
, and
R. G.
Elliman
, in 2014 Conference on Optoelectronic and Microelectronic Materials and Devices, Perth, Australia, 14–17 December 2014.
32.
S.
Slesazeck
,
H.
Mähne
,
H.
Wylezich
,
A.
Wachowiak
,
J.
Radhakrishnan
,
A.
Ascoli
,
R.
Tetzlaff
, and
T.
Mikolajick
,
RSC Adv.
5
(
124
),
102318
102322
(
2015
).
33.
Y.
Ma
,
J. M.
Goodwill
,
D.
Li
,
D. A.
Cullen
,
J. D.
Poplawsky
,
K. L.
More
,
J. A.
Bain
, and
M.
Skowronski
,
Adv. Electron. Mater.
5
(
7
),
1800954
(
2019
).
34.
W.
Yi
,
K. K.
Tsang
,
S. K.
Lam
,
X.
Bai
,
J. A.
Crowell
, and
E. A.
Flores
,
Nat. Commun.
9
(
1
),
1
10
(
2018
).
35.
D.
Kalaev
,
E.
Yalon
, and
I.
Riess
,
Solid State Ionics
276
,
9
17
(
2015
).
36.
J. J.
Yang
,
F.
Miao
,
M. D.
Pickett
,
D. A. A.
Ohlberg
,
D. R.
Stewart
,
C. N.
Lau
, and
R. S.
Williams
,
Nanotechnology
20
(
21
),
215201
(
2009
).
37.
S. K.
Nandi
,
X.
Liu
,
D. K.
Venkatachalam
, and
R. G.
Elliman
,
Phys. Rev. Appl.
4
(
6
),
064010
(
2015
).
38.
J.
Rupp
,
R.
Waser
, and
D.
Wouters
, in
2016 IEEE 8th International Memory Workshop (IMW)
(IEEE, 2016).
You do not currently have access to this content.