We propose an approach for the characterization of scanning thermal microscopy (SThM) probe response using a sample with silicon dioxide steps. The chessboard-like sample provides a series of nine surfaces made of the same material, with identical roughness, but consisting of different thicknesses of silica layers standing on a single silicon wafer. The nine regions have different effective thermal conductivities, allowing the calibration of SThM probes within a given set of surface conditions. A key benefit is the possibility of comparing the spatial resolution and the sensitivity to vertical inhomogeneities of the sample for different probes. A model is provided to determine the thermal contact area and contact thermal resistance from the experimental data. The results underline that ballistic heat conduction can be significant in crystalline substrates below the top thin films, especially for film thicknesses lower than 200 nm and effective thermal contact radius lower than 200 nm. They also highlight the sensitivity of SThM to ultrathin films, as well as the substrate below micrometric films under in-air conditions but not when in vacuum. This work advances quantitative nanometer-scale thermal metrology, where usual photothermal methods are more difficult to implement.

1.
C.
Dames
,
Annu. Rev. Heat Transfer
16
,
7
49
(
2013
).
2.
E.
Pop
,
D. A.
Mann
,
K. E.
Goodson
, and
H.
Dai
,
J. Appl. Phys.
101
(
9
),
093710
(
2007
).
3.
T.
Phan
,
S.
Dilhaire
,
V.
Quintard
,
W.
Claeys
, and
J.
Batsale
,
Microelectron. J.
29
,
181
190
(
1998
).
4.
D. I.
Florescu
,
V. M.
Asnin
,
F. H.
Pollak
,
R. J.
Molnar
, and
C. E. C.
Wood
,
J. Appl. Phys.
88
(
6
),
3295
3300
(
2000
).
5.
Y.
Hu
,
L.
Zeng
,
A.
Minnich
,
M. S.
Dresselhaus
, and
G.
Chen
,
Nat. Nanotech.
10
,
701
706
(
2015
).
6.
S.
Gomès
,
A.
Assy
, and
P. O.
Chapuis
,
Phys. Status Solidi A
212
(
3
),
477
494
(
2015
).
7.
W.
Jeong
,
S.
Hur
,
E.
Meyhofer
, and
P.
Reddy
,
Nanoscale Microscale Thermophys. Eng.
19
(
4
),
279
302
(
2015
).
8.
Y.
Zhang
,
W.
Zhu
,
F.
Hui
,
M.
Lanza
,
T.
Borca-Tasciuc
, and
M.
Muñoz Rojo
,
Adv. Funct. Mater.
30
(
18
),
1900892
(
2020
).
9.
F.
Menges
,
H.
Riel
,
A.
Stemmer
,
C.
Dimitrakopoulos
, and
B.
Gotsmann
,
Phys. Rev. Lett.
111
(
20
),
205901
(
2013
).
10.
S.
Pailhès
,
H.
Euchner
,
V. M.
Giordano
,
R.
Debord
,
A.
Assy
,
S.
Gomès
,
A.
Bosak
,
D.
Machon
,
S.
Paschen
, and
M.
De Boissieu
,
Phys. Rev. Lett.
113
(
2
),
025506
(
2014
).
11.
P.
Newby
,
B.
Canut
,
J. M.
Bluet
,
S.
Gomès
,
M.
Isaiev
,
R.
Burbelo
,
K.
Termentzidis
,
P.
Chantrenne
,
L.
Frechette
, and
V.
Lysenko
,
J. Appl. Phys.
114
(
1
),
014903
014909
(
2013
).
12.
S.
Gomès
,
L.
David
,
V.
Lysenko
,
A.
Descamps
,
T.
Nychyporuk
, and
M.
Raynaud
,
J. Phys. D Appl. Phys.
40
,
6677
6683
(
2007
).
13.
J. L.
Bosse
,
M.
Timofeeva
,
P. D.
Tovee
,
B. J.
Robinson
,
B. D.
Huey
, and
O. V.
Kolosov
,
J. Appl. Phys.
116
(
13
),
134904
(
2014
).
14.
A. M.
Massoud
,
J. M.
Bluet
,
V.
Lacatena
,
M.
Haras
,
J. F.
Robillard
, and
P. O.
Chapuis
,
Appl. Phys. Lett.
111
(
6
),
063106
(
2017
).
15.
E.
Puyoo
,
S.
Grauby
,
J. M.
Rampnoux
,
E.
Rouvière
, and
S.
Dilhaire
,
J. Appl. Phys.
109
(
2
),
024302
(
2011
).
16.
JCGM 2012 International Vocabulary of Metrology, see www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf for “Basic and general concepts and associated terms (VIM).”
17.
A. A.
Wilson
and
T.
Borca-Tasciuc
,
Rev. Sci. Instrum.
88
,
074903
(
2017
).
18.
B. D.
Iverson
,
J. E.
Blendell
, and
S. V.
Garimella
,
Rev. Sci. Instrum.
81
,
036111
(
2010
).
19.
S.
Lefevre
,
S.
Volz
,
J. B.
Saulnier
,
C.
Fuentes
, and
N.
Trannoy
,
Rev. Sci. Instrum.
74
(
4
),
2418
2423
(
2003
).
20.
E.
Guen
,
P.-O.
Chapuis
,
N. J.
Kaur
,
P.
Klapetek
, and
S.
Gomès
, “
Impact of roughness on heat conduction involving nanocontacts
,”
Appl. Phys. Lett.
(unpublished).
21.
S.
Lefèvre
and
S.
Volz
,
Rev. Sci. Instrum.
76
(
3
),
033701
(
2005
).
22.
E.
Puyoo
,
Ph.D. thesis
(
Bordeaux University
,
2010
). http://www.theses.fr/2010BOR14110.
23.
L.
David
,
S.
Gomès
, and
M.
Raynaud
,
J. Phys. D Appl. Phys.
40
,
4337
4346
(
2007
).
24.
A.
Assy
,
Ph.D. thesis
(
University of Lyon
,
2015
), see http://www.theses.fr/2015ISAL0001.
25.
M.
Massoud
,
Ph.D. thesis
(
University of Lyon
,
2016
), see http://www.theses.fr/2016LYSEI063.
26.
T. P.
Nguyen
,
L.
Thiery
,
S.
Euphrasie
,
S.
Gomès
,
B.
Hay
, and
P.
Vairac
,
Rev. Sci. Instrum.
90
(
11
),
114901
(
2019
).
27.
R. B.
Dinwiddie
,
R. J.
Pylkki
, and
P. E.
West
,
Therm. Conduct.
22
,
668
668
(
1993
).
28.
P. S.
Dobson
,
J. M.
Weaver
, and
G.
Mills
,
Sens. IEEE
2007
,
708
711
(
2007
).
29.
M.
Hinz
,
O.
Marti
,
B.
Gotsmann
,
M. A.
Lantz
, and
U.
Dürig
,
Appl. Phys. Lett.
92
(
4
),
043122
(
2008
).
30.
A.
Al Mohtar
,
G.
Tessier
,
R.
Ritasalo
,
M.
Matvejeff
,
J.
Stormonth-Darling
,
P. S.
Dobson
,
P. O.
Chapuis
,
S.
Gomès
, and
J. P.
Roger
,
Thin Solid Films
642
,
157
162
(
2017
).
31.
M. M.
Yovanovich
,
J. R.
Culham
, and
P.
Teertstra
,
IEEE Trans. Compon. Packag. Manuf. Technol. Part A
21
(
1
),
168
176
(
1998
).
32.
J. R.
Dryden
,
J. Heat Transfer
105
(
2
),
408
(
1983
).
33.
Y. S.
Muzychka
,
M. R.
Sridhar
,
M. M.
Yovanovich
, and
V. W.
Antonetti
,
J. Thermophys. Heat Transf.
13
(
4
),
489
494
(
1999
).
34.
F.
Menges
,
H.
Riel
,
A.
Stemmer
,
C.
Dimitrakopoulos
, and
B.
Gotsmann
,
Phys. Rev. Lett.
111
,
205901
(
2013
).
35.
The average mean free path Λsub can be determined by inverting the spectral kinetic expression of thermal conductivity k13cpv, with cv=p0ωmaxcp(ω)vg,p(ω)dω where c(cp) is the (polarization-dependent spectral) heat capacity and v(g,p) is the (polarization-dependent spectral) velocity of the phonons in the isotropic dispersion assumption. Depending on the fit of the dispersion curve, the value is close to 170–185 nm. Here, we take Λsub = 170 nm.
36.
G.
Wexler
,
Proc. Phys. Soc.
89
(
4
),
927
941
(
1966
).
37.
Y. V.
Sharvin
,
Sov. Phys. JETP
21
,
655
(
1965
).
38.
B.
Nikolić
and
P. B.
Allen
,
Phys. Rev. B
60
(
6
),
3963
(
1999
).
39.
A.
Assy
,
S.
Lefèvre
,
P. O.
Chapuis
, and
S.
Gomès
,
J. Phys. D Appl. Phys.
47
(
44
),
442001
(
2014
).
40.
S.
Lefèvre
,
J. B.
Saulnier
,
C.
Fuentes
, and
S.
Volz
,
Superlattices Microstruct.
35
(
3–6
),
283
288
(
2004
).
41.
S.
Lefèvre
,
Ph.D. thesis
(
University of Lyon
,
2004
).
42.
E.
Guen
,
Ph.D thesis
(
University of Lyon
,
2020
).
43.
P.
Tovee
,
M.
Pumarol
,
D.
Zeze
,
K.
Kjoller
, and
O.
Kolosov
,
J. Appl. Phys.
112
(
11
),
114317
(
2012
).
44.
A.
Assy
and
S.
Gomès
,
Nanotechnology
26
(
35
),
355401
(
2015
).
45.
C. T.
Gibson
,
G. S.
Watson
, and
S.
Myhra
,
Nanotechnology
7
(
3
),
259
(
1996
).
46.
M.
Chirtoc
,
J.
Bodzenta
, and
A.
Kaźmierczak-Bałata
,
Int. J. Heat Mass Transfer
156
,
119860
(
2020
).
47.
A.
Alkurdi,
E.
Guen
 et al, “
Resistive-thermometry scanning thermal microscopy: Combined experimental/numerical approaches for thermal studies of nano-objects
,”
J. Phys. Cond. Mat.
(unpublished).
48.
J.
Bodzenta
,
J.
Juszczyk
,
A.
Kaźmierczak-Bałata
,
P.
Firek
,
A.
Fleming
, and
M.
Chirtoc
,
Int. J. Thermophys.
37
(
7
),
73
(
2016
).
49.
K.
Kim
,
J.
Chung
,
G.
Hwang
,
O.
Kwon
, and
J. S.
Lee
,
ACS Nano
5
(
11
),
8700
8709
(
2011
).
50.
J.
Spiece
,
C.
Evangeli
,
K.
Lulla
,
A.
Robson
,
B.
Robinson
, and
O.
Kolosov
,
J. Appl. Phys.
124
(
1
),
015101
(
2018
).
You do not currently have access to this content.