Oil fly ash has been reported to be suitable for producing low-cost carbon nanotubes (CNTs). These CNTs exhibit zigzag curved walls with an almost bamboo-like structure. Owing to this structure, these CNTs exhibit very low thermal conductivity as compared to other graphitic carbon materials. They also exhibit relatively low electrical conductivity. However, they exhibit a Seebeck coefficient comparable to that of commercially available CNTs. Therefore, it is of great importance to evaluate the thermoelectric (TE) properties of oil fly ash-derived CNTs. In this study, the TE properties of oil fly ash-derived CNTs were investigated. The CNTs were further coated with polypyrrole (PPy) to enhance their TE performance. PPy was used for the modification because of its attractive TE properties and its suitability as a binder for CNTs. The PPy coating significantly enhanced the electrical conductivity of the CNTs from ∼500 to ∼1300 S/m at room temperature. A small increase in the Seebeck coefficient was also observed. The power factor value increased from 0.1 to 0.6 μW/m K2. At 440 K, the power factor value was 1.4 μW/m K2. The thermal conductivity of the CNTs (∼1 W/m K) decreased significantly by a factor of 10 after the modification with PPy. The power generation characteristics of a single leg module made up of the p-type coated CNTs were investigated under real-time conditions in air. The results demonstrated the potential of the oil fly ash-derived CNTs coated with PPy for applications as TE materials.

1.
T.
Schulz
,
T.
Reimann
,
A.
Bochmann
,
A.
Vogel
,
B.
Capraro
,
B.
Mieller
,
S.
Teichert
, and
J.
Töpfer
, “
Sintering behavior, microstructure and thermoelectric properties of calcium cobaltite thick films for transversal thermoelectric multilayer generators
,”
J. Eur. Ceram. Soc.
38
,
1600
(
2018
).
2.
R. R.
Heikes
and
R. W.
Ure
,
Thermoelectricity Science and Engineering
(
Interscience
,
New York
,
1961
).
3.
G. J.
Snyder
and
E. S.
Toberer
, “
Complex thermoelectric materials
,”
Nat. Mater.
7
,
105
(
2008
).
4.
J.
Cui
,
M.
Wang
,
X.
Xu
,
Y.
Chen
, and
J.
He
, “
Understanding the effects of iodine doping on the thermoelectric performance of n-type PbTe ingot materials
,”
J. Appl. Phys.
126
,
025108
(
2019
).
5.
C.-J.
Yao
,
H.-L.
Zhang
, and
Q.
Zhan
, “
Recent progress in thermoelectric materials based on conjugated polymers
,”
Polymers
11
,
107
(
2019
).
6.
M. S.
Hossain
,
D. H.
Huynh
,
P. D.
Nguyen
,
L.
Jiang
,
T. C.
Nguyen
,
F.
Al-Dirini
,
F. M.
Hossain
, and
E.
Skafidas
, “
Enhanced thermoelectric performance of graphene nanoribbon-based devices
,”
J. Appl. Phys.
119
,
125106
(
2016
).
7.
J.
Kim
,
J. W.
Roh
,
H.
Moon
, and
W.
Lee
, “
Observation of anisotropy in thermoelectric properties of individual single-crystalline bismuth nanowires
,”
J. Appl. Phys.
122
,
034303
(
2017
).
8.
S.
Iijima
, “
Helical microtubules of graphitic carbon
,”
Nature
354
,
56
(
1991
).
9.
L.
Wang
,
F.
Liu
,
C.
Jin
,
T.
Zhang
, and
Q.
Yin
, “
Preparation of polypyrrole/graphene nanosheets composites with enhanced thermoelectric properties
,”
RSC Adv.
4
,
46187
(
2014
).
10.
X.
Wang
,
H.
Wang
, and
B.
Liu
, “
Carbon nanotube-based organic thermoelectric materials for energy harvesting
,”
Polymers
10
,
1196
(
2018
).
11.
J.
Wang
,
K.
Cai
,
S.
Shen
, and
J.
Yin
, “
Preparation and thermoelectric properties of multi-walled carbon nanotubes/polypyrrole composites
,”
Synth. Met.
195
,
132
(
2014
).
12.
J. L.
Blackburn
,
A. J.
Ferguson
,
C.
Cho
, and
J. C.
Grunlan
, “
Carbon nanotube-based thermoelectric materials and devices
,”
Adv. Mater.
30
,
1704386
(
2018
).
13.
Y. Y.
Tsai
,
J. S.
Su
,
C. Y.
Su
, and
W. H.
He
, “
Production of carbon nanotubes by single-pulse discharge in air
,”
J. Mater. Process. Technol.
209
,
4413
(
2009
).
14.
A.
Thess
,
R.
Lee
,
P.
Nikolaev
,
H.
Dai
,
P.
Petit
,
J.
Robert
,
C.
Xu
,
Y. H.
Lee
,
S. G.
Kim
,
A. G.
Rinzler
,
D. T.
Colbert
,
G. E.
Scuseria
,
D.
Tománek
,
J. E.
Fischer
, and
R. E.
Smalley
, “
Crystalline ropes of metallic carbon nanotubes
,”
Science
273
,
483
(
1996
).
15.
F.
Kokai
,
I.
Nozaki
,
T.
Okada
,
A.
Koshio
, and
T.
Kuzumaki
, “
Efficient growth of multi walled carbon nanotubes by continuous-wave laser vaporization of graphite containing B4C
,”
Carbon
49
,
1173
(
2011
).
16.
A.
Vasylenko
,
J.
Wynn
,
P.
Medeiros
,
A.
Morris
,
J.
Sloan
, and
D.
Quigley
, “
Encapsulated nanowires: Boosting electronic transport in carbon nanotubes
,”
Phys. Rev. B
95
,
121408
(
2017
).
17.
Z.
Han
and
A.
Fina
, “
Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review
,”
Prog. Polym. Sci.
36
,
914
(
2011
).
18.
N. A.
Salah
, “Method of forming carbon nanotubes from carbon-rich fly ash,” U.S. patent 8,609,189 B2 (Dec. 17, 2013).
19.
N.
Salah
,
S. S.
Habib
,
Z. H.
Khan
,
A. A.
Al-Ghamdi
, and
A.
Memic
, “
Formation of carbon nanotubes from carbon rich fly ash: Growth parameters and mechanism
,”
Mater. Manuf. Processes
31
,
146
(
2016
).
20.
N.
Salah
,
M. S.
Abdel-Wahab
,
Z. H.
Khan
, and
S. S.
Habib
, “
Lubricant additives based on carbon nanotubes produced from carbon rich fly ash
,”
Tribol. Trans.
60
,
166
(
2017
).
21.
N.
Salah
,
A.
Alshahrie
,
M. S.
Abdel-wahab
,
N. D.
Alharbi
, and
Z. H.
Khan
, “
Carbon nanotubes of oil fly ash integrated with ultrathin CuO nanosheets as effective lubricant additives
,”
Diam. Relat. Mater.
78
,
97
(
2017
).
22.
N.
Salah
,
A. M.
Alfawzan
,
A.
Saeed
,
A.
Alshahrie
, and
W.
Allafi
, “
Effective reinforcements for thermoplastics based on carbon nanotubes of oil fly ash
,”
Sci. Rep.
9
,
20288
(
2019
).
23.
A. B.
Zhang
,
B. L.
Wang
,
J.
Wang
,
J. K.
Du
, and
C.
Xie
, “
Effect of cracking on the thermoelectric conversion efficiency of thermoelectric materials
,”
J. Appl. Phys.
121
,
045105
(
2017
).
24.
L.
Liang
,
G.
Chen
, and
C.-Y.
Guo
, “
Polypyrrole nanostructures and their thermoelectric performance
,”
Mater. Chem. Front.
1
,
380
(
2017
).
25.
K. W.
Shah
,
S.-X.
Wang
,
D. X. Y.
Soo
, and
J.
Xu
, “
One-dimensional nanostructure engineering of conducting polymers for thermoelectric applications
,”
Appl. Sci.
9
,
1422
(
2019
).
26.
Y.
Du
,
H.
Niu
,
J.
Li
,
Y.
Dou
,
S. Z.
Shen
,
R.
Jia
, and
J.
Xu
, “
Morphologies tuning of polypyrrole and thermoelectric properties of polypyrrole nanowire/graphene composites
,”
Polymers
10
,
1143
(
2018
).
27.
M.
Maruthapandi
and
A.
Gedanken
, “
A short report on the polymerization of pyrrole and its copolymers by sonochemical synthesis of fluorescent carbon dots
,”
Polymers
11
,
1240
(
2019
).
28.
A. H. P.
de Oliveira
,
M. L. F.
Nascimento
, and
H. P.
de Oliveira
, “
Carbon nanotube@MnO2 @polypyrrole composites: Chemical synthesis, characterization and application in supercapacitors
,”
Mater. Res.
19
,
1080
(
2016
).
29.
X.
Fan
,
Z.
Yang
, and
N.
He
, “
Hierarchical nanostructured polypyrrole/graphene composites as supercapacitor electrode
,”
RSC Adv.
5
,
15096
(
2015
).
30.
M.
Šetka
,
R.
Calavia
,
L.
Vojkůvka
,
E.
Llobet
,
J.
Drbohlavová
, and
S.
Vallejos
, “
Raman and XPS studies of ammonia sensitive polypyrrole nanorods and nanoparticles
,”
Sci. Rep.
9
,
8465
(
2019
).
31.
B.
Zhang
,
Y.
Xu
,
Y.
Zheng
,
L.
Dai
,
M.
Zhang
,
J.
Yang
,
Y.
Chen
,
X.
Chen
, and
J.
Zhou
, “
A facile synthesis of polypyrrole/carbon nanotube composites with ultrathin, uniform and thickness-tunable polypyrrole shells
,”
Nanoscale Res. Lett.
6
,
431
(
2011
).
32.
M. A.
Chougule
,
S. G.
Pawar
,
P. R.
Godse
,
R. N.
Mulik
,
S.
Sen
, and
V. B.
Patil
, “
Synthesis and characterization of polypyrrole (PPy) thin films
,”
Soft Nanosci. Lett.
01
,
6
10
(
2011
).
33.
S.
Rafique
,
R.
Sharif
,
I.
Rashid
, and
S.
Ghani
, “
Facile fabrication of novel silver polypyrrole-multiwall carbon nanotubes nanocomposite for replacement of platinum in dye-sensitized solar cell
,”
AIP Adv.
6
,
085018
(
2016
).
34.
R.
Bagai
,
J.
Christopher
, and
G. S.
Kapur
, “
Evaluating industrial grade functionalized multiwalled carbon nanotubes by X-ray photoelectron spectroscopy
,”
Fullerenes Nanotubes Carbon Nanostruct.
27
,
240
(
2019
).
35.
J. W.
Lee
,
F.
Serna
,
J.
Nickels
, and
C. E.
Schmidt
, “
Carboxylic acid-functionalized conductive polypyrrole as a bioactive platform for cell adhesion
,”
Biomacromolecules
7
,
1692
(
2006
).
36.
A.
Vasylenko
,
J.
Wynn
,
P. V. C.
Medeiros
,
A. J.
Morris
,
J.
Sloan
, and
D.
Quigley
, “
Encapsulated nanowires: Boosting electronic transport in carbon nanotubes
,”
Phys. Rev. B
95
,
121408
(
2017
).
37.
L.
Zhu
and
B.
Li
, “
Low thermal conductivity in ultrathin carbon nanotube
,”
Sci. Rep.
4
,
4917
(
2014
).
38.
M.
Rahaman
,
A.
Aldalbahi
,
M.
Almoiqli
, and
S.
Alzahly
, “
Chemical and electrochemical synthesis of polypyrrole using carrageenan as a dopant: Polypyrrole/multi-walled carbon nanotube nanocomposites
,”
Polymers
10
,
632
(
2018
).
39.
N. G.
Sahoo
,
Y. C.
Jung
,
H. H.
So
, and
J. W.
Cho
, “
Polypyrrole coated carbon nanotubes: Synthesis, characterization, and enhanced electrical properties
,”
Synth. Met.
157
,
374
(
2007
).
40.
J.
Luo
,
S. S.
Jiang
,
Y.
Wu
,
M. L.
Chen
, and
X. Y.
Liu
, “
Synthesis of stable aqueous dispersion of graphene/polyaniline composite mediated by polystyrene sulfonic acid
,”
J. Polym. Sci. A Polym. Chem.
50
,
4888
(
2012
).
41.
S.
Wang
,
Y.
Zhou
,
Y.
Liu
,
L.
Wang
, and
C.
Gao
, “
Enhanced thermoelectric properties of polyaniline/polypyrrole/carbon nanotube ternary composites by treatment with a secondary dopant using ferric chloride
,”
J. Mater. Chem. C
8
,
528
(
2020
).
You do not currently have access to this content.