Direct current micro-plasmas in the non-homogeneous electric field are analyzed over a wide pressure range using the self-consistent two-dimensional axisymmetric fluid model. We observe that the breakdown voltage is not the unique function of Pd, where P is the gas pressure and d is the interelectrode spacing, but also depends on the aspect ratio d/r, where r is the anode radius. This result agrees with the data reported in the literature. For fixed d, we find two modes of ionization wave propagation on the right branch of the breakdown curve: an axial streamer mode that is obtained at low pressures and a hollow streamer mode obtained at high pressures. By varying the ballast resistance connected to the anode, we analyze the steady-state parameters of the micro-discharge for the cathode–anode gap of 200 μm. We obtain normal and sub-normal glow modes of the micro-discharge operation. The instability of the latter mode is analyzed.

1.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
John Wiley and Sons
,
New Jersey
,
2005
).
2.
W. S.
Boyle
and
P.
Kisliuk
,
Phys. Rev.
97
,
255
(
1955
).
3.
L. P.
Babich
,
High-Energy Phenomena in Electric Discharges in Dense Gases
(
Futurepast
,
Arlington
,
VA
,
2003
), Vol. 2.
4.
D.
Levko
,
R. R.
Arslanbekov
, and
V. I.
Kolobov
,
Phys. Plasmas
26
,
064502
(
2019
).
5.
J.
Hopwood
,
A. R.
Hoskinson
, and
J.
Gregório
,
Plasma Sources Sci. Technol.
23
,
064002
(
2014
).
6.
K. H.
Schoenbach
and
K.
Becker
,
Eur. Phys. J. D
70
,
29
(
2016
).
7.
M.
Keidar
,
T.
Zhuang
,
A.
Shashurin
,
G.
Teel
,
D.
Chiu
,
J.
Lukas
,
S.
Haque
, and
L.
Brieda
,
Plasma Phys. Control. Fusion
57
,
014005
(
2015
).
8.
K. H.
Becker
,
K. H.
Schoenbach
, and
J. G.
Eden
,
J. Phys. D Appl. Phys.
39
,
R55
(
2006
).
9.
D.
Levko
and
L. L.
Raja
,
Phys. Plasmas
25
,
013509
(
2018
).
10.
D.
Levko
and
L. L.
Raja
,
Phys. Plasmas
22
,
123518
(
2015
).
11.
D.
Levko
and
L. L.
Raja
,
Phys. Plasmas
23
,
073513
(
2016
).
12.
K.
Rathore
,
D.
Wakim
,
A.
Chitre
, and
D.
Staack
,
Plasma Source Sci. Technol.
29
,
055011
(
2020
).
13.
VizGlow
,
Plasma Modeling Software for Multi-Dimensional Simulations of Non-Equilibrium Glow Discharge Systems, Theory Manual
, version 2.4 (
Esgee Technologies Inc.
,
2020
).
14.
G. J. M.
Hagelaar
and
L. C.
Pitchford
,
Plasma Sources Sci. Technol.
14
,
722
(
2005
).
15.
H. W.
Ellis
,
E. W.
McDaniel
,
D. L.
Albritton
,
L. A.
Viehland
,
S. L.
Lin
, and
E. A.
Mason
,
At. Data Nucl. Data Tables
22
,
179
(
1978
).
16.
L. A.
Viehland
and
C. C.
Kirkpatrick
,
Int. J. Mass Spectrom. Ion Proc.
149–150
,
555
(
1995
).
17.
A. V.
Phelps
,
J. Phys. Chem. Ref. Data
20
,
557
(
1991
).
18.
S. I.
Radwan
,
H.
El-Khabeary
, and
A. G.
Helal
,
Can. J. Phys.
94
,
1275
(
2016
).
19.
Y.
Sakiyama
,
D. B.
Graves
,
H.-W.
Chang
,
T.
Shimizu
, and
G. E.
Morfill
,
J. Phys. D Appl. Phys.
45
,
425201
(
2012
).
20.
D. L.
Scharfetter
and
H. K.
Gummel
,
IEEE Trans. Electron Devices
16
,
64
(
1969
).
21.
T.
Deconinck
,
S.
Mahadevan
, and
L. L.
Raja
,
J. Comp. Phys.
228
,
4435
(
2009
).
22.
Y. P.
Raizer
,
Gas Discharge Physics
(
Springer
,
Berlin
,
1991
).
23.
Y.
Fu
,
P.
Zhang
,
J. P.
Verboncoeur
, and
X.
Wang
,
Plasma Res. Express
2
,
013001
(
2020
).
24.
Y.
Fu
,
X.
Wang
,
X.
Zou
,
S.
Yang
,
J. P.
Verboncoeur
, and
A. J.
Christlieb
,
Phys. Plasmas
24
,
083510
(
2017
).
25.
Y.
Fu
,
J.
Krek
,
D.
Wen
,
P.
Zhang
, and
J. P.
Verboncoeur
,
Plasma Sources Sci. Technol.
28
,
095012
(
2019
).
26.
Y.
Fu
,
S.
Yang
,
X.
Zou
,
H.
Luo
, and
X.
Wang
,
High Voltage
1
,
86
(
2016
).
27.
D.
Staack
,
B.
Farouk
,
A.
Gutsol
, and
A.
Fridman
,
J. Appl. Phys.
106
,
013303
(
2009
).
28.
T.
Farouk
,
B.
Farouk
,
D.
Staack
,
A.
Gutsol
, and
A.
Fridman
,
Plasma Source Sci. Technol.
16
,
619
(
2007
).
29.
D.
Levko
and
L. L.
Raja
,
Plasma Source Sci. Technol.
26
,
035003
(
2017
).
30.
I. I.
Beilis
,
IEEE Trans. Plasma Sci.
29
,
657
(
2001
).
You do not currently have access to this content.