Stimulated Raman scattering (SRS) is studied in polycrystalline CdS/TiO2 mixtures based on laser power and temperature dependences in Raman investigation. Our Raman analysis reveals several features of nonlinear behavior, such as nonlinear laser power dependencies or high enhancement of Raman lines at a low temperature due to the intrinsic nonlinear nature of CdS, a high light scattering inside the matter, and a trap-based diffusive medium in a grain-boundary system. In particular, building up experimental evidence of conductivity at various temperatures, it is shown that the samples exhibit thermally activated conductivity due to potential local barriers revealed by a considerable fraction of the grain-boundaries in a diffusive medium. Taking into account the defect-based conductivity, a double Poole–Frenkel barrier is established within the grain-boundaries of CdS/TiO2 mixtures, and their barrier energies are investigated considering the temperature-dependent dark current of the grain-boundary model. We thus demonstrate that diffusive medium-based defects in a grain-boundary model makes CdS/TiO2 mixtures behave efficiently in nonlinear processes such as SRS. These features are of particular interest for optical communication technology, and the fundamental application of the SRS effect is semiconductor optical amplifiers.

1.
M.
Baibarac
,
A.
Nila
, and
I.
Baltog
,
Opt. Mater. Express
6
,
1881
(
2016
).
2.
J.
Zhang
,
D.
Li
,
R.
Chen
, and
Q.
Xiong
,
Nature
493
(
7433
),
504
508
(
2013
).
3.
E.
Beckmann
,
I.
Broser
, and
R.
Broser
, in
Luminescence of Crystals, Molecules and Solutions
, edited by
F.
Williams
(
Plenum Press
,
New York
,
1973
), pp.
155
161
.
4.
C. H.
Henry
and
K.
Nassau
,
Phys. Rev. B
1
,
1628
(
1970
).
5.
M.
Baibarac
,
I.
Baltog
, and
S.
Lefrant
,
J. Appl. Phys.
110
,
053106
(
2011
).
6.
F.
Luan
,
B.
Gu
,
A. S. L.
Gomes
,
K.-T.
Yong
,
S.
Wen
, and
P. N.
Prasad
,
Nano Today
10
,
168
192
(
2015
).
7.
Q.
Zhang
,
X.
Liu
,
M. I. B.
Utama
,
J.
Zhang
,
M.
de la Mata
,
J.
Arbiol
,
Y.
Lu
,
T. C.
Sum
, and
Q.
Xiong
,
Nano Lett.
12
(
12
),
6420
6427
(
2012
).
8.
K.-H.
Pantke
,
D.
Oberhauser
,
V. G.
Lyssenko
,
J. M.
Hvam
, and
G.
Weimann
,
Phys. Rev. B
47
(
4
),
2413
2416
(
1993
).
9.
A. K.
Ganguly
and
J. L.
Birman
,
Phys. Rev.
162
,
806
(
1967
).
10.
A.
Nila
,
I.
Baltog
,
D.
Dragoman
,
M.
Baibarac
, and
I.
Mercioniu
,
J. Phys. Condens. Matter
29
,
365702
(
2017
).
11.
L.
Sirleto
,
M. A.
Ferrara
,
T.
Nikitin
,
S.
Novikov
, and
L.
Khriachtchev
,
Nat. Commun.
3
,
1220
(
2012
).
12.
P.-H.
Tan
,
Raman Spectroscopy of Two-Dimensional Materials
, Materials Science Springer Series (
2019
).
13.
M. N.
Kelly
,
S. A.
Bojarski
, and
G. S.
Rohrer
,
J. Am. Ceram. Soc.
100
(
2
),
1
7
(
2016
).
14.
T.
Nikitin
,
S.
Novikov
, and
L.
Khriachtchev
,
Appl. Phys. Lett.
103
,
151110
(
2013
).
15.
E.
Villa-Aleman
,
N. J.
Bridges
,
T. C.
Shehee
, and
A. L.
Houk
,
J. Nucl. Mater.
515
,
140
149
(
2019
).
16.
R.
Rao
,
J.
Menendez
,
C. D.
Poweleit
, and
A. M.
Rao
,
Phys. Rev. Lett.
99
,
047403
(
2007
).
17.
L.
Bergman
,
D.
Alexson
,
P. L.
Murphy
,
R. J.
Nemanich
,
M.
Dutta
,
M. A.
Stroscio
,
C.
Balkas
,
H.
Shin
, and
R. F.
Davis
,
Phys. Rev. B
59
(
20
),
12977
(
1999
).
18.
N. G.
Basov
,
Optical Properties of Semiconductors, Proceeding of the P.N. Lebedev Physics Institute
(
Springer US
,
1976
), Vol. 75.
19.
I.
Smaranda
,
L.
Mihut
,
M.
Baibarac
,
I.
Baltog
, and
S.
Lefrant
,
Opt. Eng.
53
(
9
),
097109
(
2014
).
20.
T.
Sperling
,
W.
Bührer
,
M.
Ackermann
,
C. M.
Aegerter
, and
G.
Maret
,
New J. Phys.
16
,
112001
(
2014
).
21.
P. Y.
Yu
and
M.
Cardona
,
Fundamentals of Semiconductors
(
Springer-Verlag
,
Berlin
,
1999
), Vol. 778.
22.
N. A.
DiLello
,
D. K.
Johnstone
, and
J. L.
Hoyt
,
J. Appl. Phys.
112
,
054506
(
2012
).
23.
R. H.
Bube
,
Photoelectronic Properties of Semiconductors
(
Cambridge University Press
,
1992
).
24.
M.
Ilie
,
D.
Dragoman
, and
M.
Baibarac
,
Phys. Status Solidi B
256
,
1800392
(
2019
).
25.
M.
Piasecki
,
G. L.
Myronchuk
,
O. V.
Zamurueva
,
O. Y.
Khyzhun
,
O. V.
Parasyuk
,
A. O.
Fedorchuk
,
A.
Albassam
,
A. M.
El-Naggar
, and
I. V.
Kityk
,
Mater. Res. Express
3
,
025902
(
2016
).
26.
G. P.
Sankar
and
P.
Agarwal
,
J. Appl. Phys.
106
,
103705
(
2009
).
27.
A. F.
Mayadas
and
M.
Shatzkes
,
Phys. Rev. B
1
,
1382
1389
(
1970
).
28.
W.
Steinhögl
,
G.
Schindler
,
G.
Steinlesberger
, and
M.
Engelhardt
,
Phys. Rev. B
66
,
075414
(
2002
).
29.
J. W.
Orton
,
B. J.
Goldsmith
,
J. A.
Chapman
, and
M. J.
Powell
,
J. Appl. Phys.
53
(
3
),
1602
1614
(
1982
).
30.
K.
Ylmaz
,
J. Ovonic Res.
10
(
6
),
211
219
(
2014
).
31.
I.
Gunal
and
M.
Parlak
,
J. Mater. Sci. Mater. Electron.
8
,
9
13
(
1997
).
32.
E.
Lim
and
R.
Ismail
,
Electronics
4
,
586
613
(
2015
).
33.
F.-C.
Chiu
,
Adv. Mater. Sci.
578168
,
2014
(
2014
).

Supplementary Material

You do not currently have access to this content.