We explore the coexistence region in the vicinity of the Mott critical end point employing a compressible cell spin-1/2 Ising-like model. We analyze the case for the spin-liquid candidate κ-(BEDT-TTF)2Cu2(CN)3, where close to the Mott critical end point metallic puddles coexist with an insulating ferroelectric phase. Our results are fourfold: (i) a universal divergent-like behavior of the Grüneisen parameter upon crossing the first-order transition line; (ii) based on scaling arguments, we show that within the coexistence region, for any system close to the critical point, the relaxation-time is entropy-dependent; (iii) we propose the electric Grüneisen parameter ΓE, which quantifies the electrocaloric effect; and (iv) we identify the metallic/insulating coexistence region as an electronic Griffiths-like phase. Our findings suggest that ΓE governs the dielectric response close to the critical point and that an electronic Griffiths-like phase emerges in the coexistence region.

1.
M.
Imada
,
A.
Fujimori
, and
Y.
Tokura
,
Rev. Mod. Phys.
70
,
1039
(
1998
).
2.
L.
Bartosch
,
M.
de Souza
, and
M.
Lang
,
Phys. Rev. Lett.
104
,
245701
(
2010
).
3.
M.
de Souza
and
L.
Bartosch
,
J. Phys. Condens. Matter
27
,
053203
(
2015
).
4.
E.
Dagotto
,
Science
309
,
257
(
2005
).
5.
H.
E. Stanley
,
Introduction to Phases Transitions and Critical Phenomena
(
Oxford Science Publications
,
New York
,
1971
).
6.
M.
de Souza
et al.,
Phys. Rev. Lett.
99
,
037003
(
2007
).
7.
D.
Fournier
,
M.
Poirier
,
M.
Castonguay
, and
K. D.
Truong
,
Phys. Rev. Lett.
90
,
127002
(
2003
).
8.
R.
Rösslhuber
, arXiv:1911.12273v1 (2019).
9.
M.
de Souza
et al.,
Eur. J. Phys.
37
,
055105
(
2016
).
10.
L.
Zhu
,
M.
Garst
,
A.
Rosch
, and
Q.
Si
,
Phys. Rev. Lett.
91
,
066404
(
2003
).
11.
D.
Jérome
,
Nat. Phys.
5
,
864
(
2009
).
12.
J.
Vučičević
et al.,
Phys. Rev. B
88
,
075143
(
2013
).
13.
J.
Vučičević
et al.,
Phys. Rev. Lett.
114
,
246402
(
2015
).
14.
T.
Furukawa
et al.,
Nat. Phys.
11
,
221
(
2015
).
15.
G.
Gomes
,
H. E.
Stanley
, and
M.
de Souza
,
Sci. Rep.
9
,
12006
(
2019
).
16.
C. A.
Cerdeiriña
et al.,
J. Chem. Phys.
150
,
244509
(
2019
).
17.
E.
Ising
,
Z. Phys.
31
,
253
(
1925
).
18.
C.
Schinckus
,
Physica A
508
,
95
(
2018
).
19.
A. F.
Siegenfeld
and
Y.
Bar-Yam
,
Nat. Phys.
16
,
186
(
2020
).
20.
C. P.
Crisostomo
and
C. M. N.
Pinõl
,
Int. Schol. Sci. Res. Inn.
16
,
735
(
2012
).
21.
I. F.
Mello
,
L.
Squillante
,
G.O.
Gomes
,
A. C.
Seridonio
, and
M.
de Souza
, arXiv:2003.11860v2 (2020).
22.
M.
Blume
,
V. J.
Emery
, and
R. B.
Griffiths
,
Phys. Rev. A
4
,
1071
(
1971
).
23.
E. W.
Carlson
,
K. A.
Dahmen
,
E.
Fradkin
, and
S. A.
Kivelson
,
Phys. Rev. Lett.
96
,
097003
(
2006
).
24.
F. F.
Doria
,
R.
Erichsen, Jr.
,
D.
Dominguez
,
M.
González
, and
S. G.
Magalhaes
,
Physica A
422
,
58
(
2015
).
25.
P.
Atkins
and
J.
de Paula
,
Atkins’ Physical Chemistry
(
Oxford University Press
,
New York
,
2006
).
26.
E. P.
Favvas
and
A. C.
Mitropoulos
,
J. Eng. Sci. Technol. Rev.
1
,
25
(
2008
).
27.
A.
Pustogow
et al.,
Nat. Mat.
17
,
773
(
2018
).
28.
P. G.
Debenedetti
,
Metastable Liquids: Concepts and Principles
(
Princeton University Press
,
Princeton
,
1996
).
29.
R.
Yamamoto
et al.,
Phys. Rev. Lett.
124
,
046404
(
2020
).
30.
G.
Gomes
et al.,
Phys. Rev. B
100
,
054446
(
2019
).
31.
L.
Squillante
,
I. F.
Mello
,
G.
Gomes
,
A. C.
Seridonio
, and
M.
de Souza
, arXiv:2003.13060v1 (2020).
32.
N. W.
Ashcroft
and
N. D.
Mermim
,
Solid State Physics
(
Brooks Cole
,
1976
).
33.
A.
Pustogow
et al., arXiv:1907.04437v2 (2019).
34.
R.
Casalini
and
C. M.
Roland
,
Phys. Rev. E
69
,
062501
(
2004
).
35.
M.
Paluch
and
C. M.
Roland
,
J. Non-Cryst. Solids
316
,
413
(
2003
).
36.
I.
Avramov
and
A.
Milchev
,
J. Non-Cryst. Solids
104
,
253
(
1988
).
37.
J. C.
Slater
,
Introduction to Chemical Physics
(
McGraw-Hill Book Company Inc.
,
1939
).
38.
M.
Abdel-Jawad
et al.,
Phys. Rev. B
82
,
125119
(
2010
).
39.
K.
Watanabe
,
H.
Kawamura
,
H.
Nakano
, and
T.
Sakai
,
J. Phys. Soc. Jpn.
83
,
034714
(
2014
).
40.
M.
Cyrot
and
P.
Lacour-Gayet
,
Solid State Commun.
11
,
1767
(
1972
).
41.
A.
Keren
,
P.
Mendels
,
I. A.
Campbell
, and
J.
Lord
,
Phys. Rev. Lett.
77
,
1386
(
1996
).
42.
R.
Tripathi
,
D.
Das
,
P. K..
Biswas
,
D. T.
Adroja
,
A. D.
Hillier
, and
Z.
Hossain
,
Phys. Rev. B
99
,
224424
(
2019
).
43.
G.
Kotliar
,
S.
Murthy
, and
M. J.
Rozenberg
,
Phys. Rev. Lett.
89
,
046401
(
2002
).
44.
S. R.
Hassan
,
A.
Georges
, and
H. R.
Krishnamurthy
,
Phys. Rev. Lett.
94
,
036402
(
2005
).
45.
R. B.
Griffiths
,
Phys. Rev. Lett.
23
,
17
(
1969
).
46.
T.
Vojta
and
M. Y.
Lee
,
Phys. Rev. Lett.
96
,
035701
(
2006
).
47.
T.
Vojta
,
J. Phys. A Math. Gen.
39
,
R143
(
2006
).
48.
C.
Magen
et al.,
Phys. Rev. Lett.
96
,
167201
(
2006
).
49.
T.
Vojta
,
AIP Conf. Proc.
1550
,
188
(
2013
).
50.
T.
Senthil
,
Phys. Rev. B
78
,
045109
(
2008
).
51.
R. V.
Mishmash
et al.,
Phys. Rev. B
91
,
235140
(
2015
).
52.
T.
Itou
et al.,
Sci. Adv.
3
,
e1601594
(
2017
).
53.
S.
Kundu
et al.,
Phys. Rev. Lett.
124
,
095703
(
2020
).
54.
K.
Ghosh
et al.,
Sci. Rep.
5
,
15801
(
2015
).
55.
E.
Dagotto
,
T.
Hotta
, and
A.
Moreo
,
Phys. R.
344
,
1
(
2001
).
56.
M.
Blume
,
V. J.
Emery
, and
R. B.
Griffiths
,
Phys. Rev. A
4
,
1071
(
1971
).

Supplementary Material

You do not currently have access to this content.