A new approach is presented to measure the length distribution of dispersed single-walled carbon nanotubes (SWCNT). In this method, the diffusive trajectories of individual SWCNTs in solution are reconstructed from high frame rate video stacks. These trajectories allow the estimation of two key statistics for the SWCNTs: their translational diffusion coefficient and the autocorrelation time of their fluorescence intensity. We show that the autocorrelation time is a measure of the rotational diffusion coefficient of the SWCNTs and that the length of the SWCNTs can be estimated either from the rotational diffusion coefficients alone or by combining translational and rotational diffusion coefficients. Moreover, this last estimate does not require knowledge of the solution viscosity or of the SWCNT hydrodynamic diameter.

1.
N.
Behabtu
,
C. C.
Young
,
D. E.
Tsentalovich
,
O.
Kleinerman
,
X.
Wang
,
A. W.
Ma
,
E. A.
Bengio
,
R. F.
ter Waarbeek
,
J. J.
de Jong
,
R. E.
Hoogerwerf
,
S. B.
Fairchild
,
J. B.
Ferguson
,
B.
Maruyama
,
J.
Kono
,
Y.
Talmon
,
Y.
Cohen
,
M. J.
Otto
, and
M.
Pasquali
, “
Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity
,”
Science
339
,
182
186
(
2013
).
2.
A. D.
Franklin
, “
Nanomaterials in transistors: From high-performance to thin-film applications
,”
Science
349
,
aab2750
(
2015
).
3.
X.
He
,
H.
Htoon
,
S.
Doorn
,
W.
Pernice
,
F.
Pyatkov
,
R.
Krupke
,
A.
Jeantet
,
Y.
Chassagneux
, and
C.
Voisin
, “
Carbon nanotubes as emerging quantum-light sources
,”
Nat. Mater.
17
,
663
670
(
2018
).
4.
F. N.
Soria
,
C.
Paviolo
,
E.
Doudnikoff
,
M.-L.
Arotcarena
,
A.
Lee
,
N.
Danné
,
A. K.
Mandal
,
P.
Gosset
,
B.
Dehay
,
L.
Groc
,
L.
Cognet
, and
E.
Bezard
, “
Synucleinopathy alters nanoscale organization and diffusion in the brain extracellular space through hyaluronan remodeling
,”
Nat. Commun.
11
,
3440
(
2020
).
5.
R. M.
Williams
,
C.
Lee
,
T. V.
Galassi
,
J. D.
Harvey
,
R.
Leicher
,
M.
Sirenko
,
M. A.
Dorso
,
J.
Shah
,
N.
Olvera
,
F.
Dao
,
D. A.
Levine
, and
D. A.
Heller
, “
Noninvasive ovarian cancer biomarker detection via an optical nanosensor implant
,”
Sci. Adv.
4
,
eaaq1090
(
2018
).
6.
S.
Wang
,
Z.
Liang
,
B.
Wang
, and
C.
Zhang
, “
Statistical characterization of single-wall carbon nanotube length distribution
,”
Nanotechnology
17
,
634
(
2006
).
7.
K. J.
Ziegler
,
U.
Rauwald
,
Z.
Gu
,
F.
Liang
,
W.
Billups
,
R. H.
Hauge
, and
R. E.
Smalley
, “
Statistically accurate length measurements of single-walled carbon nanotubes
,”
J. Nanosci. Nanotechnol.
7
,
2917
2921
(
2007
).
8.
J. K.
Streit
,
S. M.
Bachilo
,
A. V.
Naumov
,
C.
Khripin
,
M.
Zheng
, and
R. B.
Weisman
, “
Measuring single-walled carbon nanotube length distributions from diffusional trajectories
,”
ACS Nano
6
,
8424
8431
(
2012
).
9.
N.
Fakhri
,
F. C.
MacKintosh
,
B.
Lounis
,
L.
Cognet
, and
M.
Pasquali
, “
Brownian motion of stiff filaments in a crowded environment
,”
Science
330
,
1804
1807
(
2010
).
10.
A.
Lee
,
K.
Tsekouras
,
C.
Calderon
,
C.
Bustamante
, and
S.
Pressé
, “
Unraveling the thousand word picture: An introduction to super-resolution data analysis
,”
Chem. Rev.
117
,
7276
7330
(
2017
).
11.
X.
Michalet
and
A. J.
Berglund
, “
Optimal diffusion coefficient estimation in single-particle tracking
,”
Phys. Rev. E
85
,
061916
(
2012
).
12.
A. G.
Godin
,
J. A.
Varela
,
Z.
Gao
,
N.
Danné
,
J. P.
Dupuis
,
B.
Lounis
,
L.
Groc
, and
L.
Cognet
, “
Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain
,”
Nat. Nanotechnol.
12
,
238
243
(
2017
).
13.
C.
Paviolo
,
F. N.
Soria
,
J. S.
Ferreira
,
A.
Lee
,
L.
Groc
,
E.
Bezard
, and
L.
Cognet
, “
Nanoscale exploration of the extracellular space in the live brain by combining single carbon nanotube tracking and super-resolution imaging analysis
,”
Methods
174
,
91
99
(
2020
).
14.
D. A.
Tsyboulski
,
S. M.
Bachilo
,
A. B.
Kolomeisky
, and
R. B.
Weisman
, “
Translational and rotational dynamics of individual single-walled carbon nanotubes in aqueous suspension
,”
ACS Nano
2
,
1770
1776
(
2008
).
15.
T. K.
Cherukuri
,
D. A.
Tsyboulski
, and
R. B.
Weisman
, “
Length- and defect-dependent fluorescence efficiencies of individual single-walled carbon nanotubes
,”
ACS Nano
6
,
843
850
(
2012
).
16.
G.
Li
and
J. X.
Tang
, “
Diffusion of actin filaments within a thin layer between two walls
,”
Phys. Rev. E
69
,
061921
(
2004
).
17.
V. R. N.
Telis
,
J.
Telis-Romero
,
H.
Mazzotti
, and
A. L.
Gabas
, “
Viscosity of aqueous carbohydrate solutions at different temperatures and concentrations
,”
Int. J. Food Prop.
10
,
185
195
(
2007
).
18.
N.-S.
Cheng
, “
Formula for the viscosity of a glycerol-water mixture
,”
Ind. Eng. Chem. Res.
47
,
3285
3288
(
2008
).
19.
A.
Volk
and
C. J.
Kähler
, “
Density model for aqueous glycerol solutions
,”
Exp. Fluids
59
,
75
(
2018
).
20.
R.
Duggal
and
M.
Pasquali
, “
Dynamics of individual single-walled carbon nanotubes in water by real-time visualization
,”
Phys. Rev. Lett.
96
,
246104
(
2006
).
21.
N.
Fakhri
,
D. A.
Tsyboulski
,
L.
Cognet
,
R. B.
Weisman
, and
M.
Pasquali
, “
Diameter-dependent bending dynamics of single-walled carbon nanotubes in liquids
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
14219
14223
(
2009
).
22.
S. R.
Aragon
and
D.
Flamik
, “
High precision transport properties of cylinders by the boundary element method
,”
Macromolecules
42
,
6290
6299
(
2009
).
23.
D. R.
Bickel
and
R.
Frühwirth
, “
On a fast, robust estimator of the mode: Comparisons to other robust estimators with applications
,”
Comput. Stat. Data Anal.
50
,
3500
3530
(
2006
).
24.
J. G.
Duque
,
A. N. G.
Parra-Vasquez
,
N.
Behabtu
,
M. J.
Green
,
A. L.
Higginbotham
,
B. K.
Price
,
A. D.
Leonard
,
H. K.
Schmidt
,
B.
Lounis
,
J. M.
Tour
,
S. K.
Doorn
,
L.
Cognet
, and
M.
Pasquali
, “
Diameter-dependent solubility of single-walled carbon nanotubes
,”
ACS Nano
4
,
3063
3072
(
2010
).
You do not currently have access to this content.