The formation mechanism of α″-Fe16N2 phase was investigated in the form of nanoparticles. Both α-Fe and γ-Fe2O3 nanoparticles were used to prepare α″-Fe16N2 by using a low-temperature nitriding process (≤180 °C). The synthesized α″-Fe16N2 nanoparticles have a high α″-Fe16N2 volume ratio up to 93%, with a specific saturation magnetization of 178 emu/g (room temperature) and coercivity of 2.0 kOe. The formation of α″-Fe16N2 phase includes three stages: (1) the heterogenous nucleation of α″-Fe16N2 with simultaneous chemical reaction, (2) the growth of α″-Fe16N2 with a local electric field in the Fe16N2 layer, and (3) the termination of Fe16N2 growth due to the nucleation of other Fe–N phases (ε-Fe3N or γ′-Fe4N). In low-temperature nitriding, NH3 was used as the nitrogen source. The adsorbed NH3 molecules on the Fe surface decompose into N and H atoms, and then N atoms react with Fe and nucleation of α″-Fe16N2 simultaneously occurs at the high-energy surface sites of reduced Fe nanoparticles. The growth of α″-Fe16N2 phase can be explained by the electric field modified diffusion theory, where the electric field is established by the migration of Fe and N ions and electrons. Finally, the nucleation of Fe–N stable phases (ε-Fe3N or γ′-Fe4N) ceases the further growth of α′′-Fe16N2 layer. Then, there is critical thickness for the α″-Fe16N2 layer, which is estimated to be 10–15 nm from the surface. Therefore, single-phase α″-Fe16N2 nanoparticles are expected in fine particles with less than 30 nm in diameter.

1.
J.-P.
Wang
,
N.
Ji
,
X. Q.
Liu
,
Y. H.
Xu
,
C.
Sanchez-Hanke
,
Y. M.
Wu
,
F. M. F.
de Groot
,
L. F.
Allard
, and
E.
Lara-Cruzio
, “
Fabrication of Fe16N2 films by sputtering process and experimental investigation of origin of giant saturation magnetization in Fe16N2
,”
IEEE Trans. Magn.
48
(
5
),
1710
1717
(
2012
).
2.
J.
Wang
, “
Environment-friendly bulk Fe16N2 permanent magnet: Review and prospective
,”
J. Magn. Magn. Mater.
497
,
165962
(
2020
).
3.
A.
Nagatomi
,
S.
Kikkawa
,
T.
Hinomura
,
S.
Nasu
, and
F.
Kanamaru
, “
Synthesis of iron nitrides FexN (x: 2, 2-3, 4, 16/2) by nitrogenizing α-Fe in ammonia gas, and magnetic properties of the bulk sample of Fe16N2
,”
J. Jpn. Soc. Powder Powder Metall.
46
(
2
),
151
155
(
1999
).
4.
T.
Ogawa
,
Y.
Ogata
,
R.
Gallage
,
N.
Kobayashi
,
N.
Hayashi
,
Y.
Kusano
,
S.
Yamamoto
,
K.
Kohara
,
M.
Doi
, and
M.
Takano
, “
Challenge to the synthesis of α"-Fe16N2 compound nanoparticle with high saturation magnetization for rare earth free new permanent magnetic material
,”
Appl. Phys. Express
6
(
7
),
3
6
(
2013
).
5.
I.
Dirba
,
C. A.
Schwobel
,
L. V. B.
Diop
,
M.
Duerrschnabel
,
L.
Molina-Luna
,
K.
Hofmann
,
P.
Komissinskiy
,
H.-J.
Kleebe
, and
O.
Gutgleisch
, “
Synthesis, morphology, thermal stability and magnetic properties of α″-Fe16N2 nanoparticles obtained by hydrogen reduction of γ-Fe2O3 and subsequent nitrogenation
,”
Acta Mater.
123
,
214
222
(
2017
).
6.
K. H.
Jack
, “
The iron-nitrogen system: The preparation and the crystal structures of nitrogen-austenite(γ) and nitrogen-martensite(α′)
,”
Proc. R. Soc. A
208
,
200
215
(
1951
).
7.
K. H.
Jack
, “
The occurrence and the crystal structure of α″-iron nitride; a new type of interstitial alloy formed during the tempering of nitrogen-martensite
,”
Proc. R. Soc. A
208
(
1093
),
216
224
(
1951
).
8.
K. H.
Jack
, “
The synthesis, structure, and characterization of α″-Fe16N2 (invited)
,”
J. Appl. Phys.
76
(
10
),
6620
6625
(
1994
).
9.
K. H.
Jack
, “
The synthesis and characterization of bulk α″-Fe16N2
,”
J. Alloys Compd.
222
,
160
(
1995
).
10.
T. K.
Kim
and
M.
Takahashi
, “
New magnetic material having ultrahigh magnetic moment
,”
Appl. Phys. Lett.
20
(
12
),
492
494
(
1972
).
11.
Y.
Sugita
,
K.
Mitsuoka
,
M.
Komuro
,
H.
Hoshiya
,
Y.
Kozono
, and
M.
Hanazono
, “
Giant magnetic moment and other magnetic properties of epitaxially grown Fe16N2 single-crystal films (invited)
,”
J. Appl. Phys.
70
(
10
),
5977
5982
(
1991
).
12.
N.
Ji
,
L. F.
Allard
,
E.
Lara-Curzio
, and
J.-P.
Wang
, “
N site ordering effect on partially ordered Fe16N2
,”
Appl. Phys. Lett.
98
(
9
),
092506
(
2011
).
13.
N.
Ji
,
Y.
Wu
, and
J.-P.
Wang
, “
Epitaxial high saturation magnetization FeN thin films on Fe(001) seeded GaAs(001) single crystal wafer using facing target sputterings
,”
J. Appl. Phys.
109
,
07B767
(
2011
).
14.
N.
Ji
,
V.
Lauter
,
X.
Zhang
,
H.
Ambaye
, and
J.-P.
Wang
, “
Strain induced giant magnetism in epitaxial Fe16N2 thin film
,”
Appl. Phys. Lett.
102
(
7
),
072411
(
2013
).
15.
X.
Zhang
,
N.
Ji
,
V.
Lauter
,
H.
Ambaye
, and
J.-P.
Wang
, “
Strain effect of multilayer FeN structure on GaAs substrate
,”
J. Appl. Phys.
113
(
17
),
17E149
(
2013
).
16.
M.
Yang
,
L. F.
Allard
,
N.
Ji
,
X.
Zhang
,
G.-H.
Yu
, and
J.-P.
Wang
, “
The effect of strain induced by Ag underlayer on saturation magnetization of partially ordered Fe16N2 thin films
,”
Appl. Phys. Lett.
103
(
24
),
242412
(
2013
).
17.
X.
Hang
,
X.
Zhang
,
B.
Ma
,
V.
Lauter
, and
J.-P.
Wang
, “
Epitaxial Fe16N2 thin film on nonmagnetic seed layer
,”
Appl. Phys. Lett.
112
(
19
),
192402
(
2018
).
18.
X.
Zhang
,
K.
Nomura
, and
J. P.
Wang
, “
New insight on the mössbauer spectra for Fe16N2 thin films with high saturation magnetization
,”
Jpn. J. Appl. Phys.
58
(
12
), 120907 (
2019
).
19.
H.
Takahashi
,
M.
Igarashi
,
A.
Kaneko
,
H.
Miyajima
, and
Y.
Sugita
, “
Perpendicular uniaxial magnetic anisotropy of Fe16N2 [001] single crystal films grown by molecular beam epitaxy
,”
IEEE Trans. Magn.
35
(
5
),
2982
2984
(
1999
).
20.
X.
Li
,
M. Y.
Yang
,
M.
Jamali
,
F. Y.
Shi
,
S. S.
Kang
,
Y. F.
Jiang
,
X. W.
Zhang
,
H. S.
Li
,
S.
Okatov
,
S.
Faleev
,
A.
Kalitsov
,
G. H.
Yu
,
P. M.
Voyles
,
O. N.
Mryasov
, and
J. P.
Wang
, “
Heavy-metal-free, low-damping, and non-interface perpendicular Fe16N2 thin film and magnetoresistance device
,”
Phys. Status Solidi Rapid Res. Lett.
13
(
7
),
1900089
(
2019
).
21.
Y.
Jiang
,
V.
Dabade
,
L. F.
Allard
,
E.
Lara-Curzio
,
R.
James
, and
J. P.
Wang
, “
Synthesis of α′′-Fe16N2 compound anisotropic magnet by the strained-wire method
,”
Phys. Rev. Appl.
6
(
2
),
024013
(
2016
).
22.
Y.
Jiang
,
M.
Al Mehedi
,
E.
Fu
,
Y.
Wang
,
L. F.
Allard
, and
J. P.
Wang
, “
Synthesis of Fe16N2 compound free-standing foils with 20 MGOe magnetic energy product by nitrogen ion-implantation
,”
Sci. Rep.
6
,
24536
(
2016
).
23.
J.
Liu
,
G.
Guo
,
F.
Zhang
,
Y.
Wu
,
B.
Ma
, and
J. P.
Wang
, “
Synthesis of α′′- Fe16N2 ribbons with a porous structure
,”
Nanoscale Adv.
1
(
4
),
1337
1342
(
2019
).
24.
J.
Liu
,
G.
Guo
,
X.
Zhang
,
F.
Zhang
,
B.
Ma
, and
J.-P.
Wang
, “
Synthesis of α″- Fe16N2 foils with an ultralow temperature coefficient of coercivity for rare-earth-free magnets
,”
Acta Mater.
184
,
143
150
(
2020
).
25.
M. Q.
Huang
,
W. E.
Wallace
,
S.
Simizu
,
A. T.
Pedziwiatr
,
R. T.
Obermyer
, and
S. G.
Sankar
, “
Synthesis and characterization of Fe16N2 in bulk form
,”
J. Appl. Phys.
75
(
10
),
6574
6576
(
1994
).
26.
X.
Bao
,
R. M.
Metzger
, and
M.
Carbucicchio
, “
Synthesis and properties of α″- Fe16N2 in magnetic particles
,”
J. Appl. Phys.
75
(
10
),
5870
5872
(
1994
).
27.
S.
Kikkawa
,
K.
Kubota
, and
T.
Takeda
, “
Particle size dependence in low temperature nitridation reaction for Fe16N2
,”
J. Alloys Compd.
449
(
1–2
),
7
10
(
2008
).
28.
See https://www-s.nist.gov/srmors/certificates/660c.pdf for “Certificate of standard reference materials 660C.”
29.
Certificate of Standard Reference Materials 1979.
30.
V. G.
Gavriljuk
and
H.
Berns
,
High Nitrogen Steels—Structure, Properties, Manufacture, Application
(
Springer
,
1999
).
31.
N.
Cabrera
and
N. F.
Mott
, “
Theory of the oxidation of metals
,”
Rep. Prog. Phys.
12
,
163
(
1949
).
32.
A. T.
Fromhold
, “
Metal oxidation kinetics from the viewpoint of a physicist: The microscopic motion of charged defects through oxides
,”
Langmuir
3
(
6
),
886
896
(
1987
).
33.
A. T.
Fromhold
, “
Fundamental theory of the growth of thick oxide films on metals
,”
J. Phys. Soc. Jpn.
48
(
6
),
2022
2030
(
1980
).
34.
H.
Takahashi
,
H.
Shoji
, and
M.
Takahashi
, “
Structure and magnetic moment of Fe16N2 sputtered film
,”
J. Magn. Magn. Mater.
174
(
1–2
),
57
69
(
1997
).
35.
C. M.
Wang
,
D. R. B. L. E.
Thomas
,
J. E.
Amonette
,
J.
Antony
,
Y.
Qiang
, and
G.
Duscher
, “
Void formation during early stages of passivation: Initial oxidation of iron nanoparticles at room temperature
,”
J. Appl. Phys.
98
(
9
), 094308 (
2005
).
36.
A.
Shavel
,
B.
Rodríguez-González
,
M.
Spasova
,
M.
Farle
, and
L. M.
Liz-Marzán
, “
Synthesis and characterization of iron/iron oxide core/shell nanocubes
,”
Adv. Funct. Mater.
17
(
18
),
3870
3876
(
2007
).
37.
Y.
Sun
,
X.
Zuo
,
S. K. R. S.
Sankaranarayanan
,
S.
Peng
,
B.
Narayanan
, and
G.
Kamath
, “
Quantitative 3D evolution of colloidal nanoparticle oxidation in solution
,”
Science (80-.)
356
(
6335
),
303
307
(
2017
).
38.
R.
Zulhijah
,
A. B. D.
Nandiyanto
,
T.
Ogi
,
T.
Iwaki
,
K.
Nakamura
, and
K.
Okuyama
, “
Effect of oxidation on α″- Fe16N2 phase formation from plasma-synthesized spherical core-shell α-Fe/Al2O3 nanoparticles
,”
J. Magn. Magn. Mater.
381
,
89
98
(
2015
).
39.
T.
Bell
, “
Martensite transformation start temperature in iron-nitrogen alloys
,”
J. Iron Steel INST
206
,
1017
1021
(
1968
).
40.
S. J.
Roosendaal
,
A. M.
Vredenberg
, and
F. H. P. M.
Habraken
, “
Oxidation of iron: The relation between oxidation kinetics and oxide electronic structure
,”
Phys. Rev. Lett.
84
(
15
),
3366
3369
(
2000
).
41.
K. K.
Fung
,
B.
Qin
, and
X. X.
Zhang
, “
Passivation of a-Fe nanoparticle by epitaxial γ-Fe2O3 shell
,”
Mater. Sci. Eng. A
286
,
135
138
(
2000
).
42.
C. K. S. R.
Logan
and
R. L.
Moss
, “
The catalytic decomposition of ammonia on evaporated iron films
,”
Trans. Faraday Soc.
54
,
922
(
1958
).
43.
S.
Brunauer
,
K. S.
Love
, and
R. G.
Keenan
, “
Adsorption of nitrogen and the mechanism of ammonia decomposition over iron catalysts*
,”
J. Am. Chem. Soc.
64
(
4
),
751
758
(
1942
).
44.
N.
Tsubouchi
,
H.
Hashimoto
, and
Y.
Ohtsuka
, “
High catalytic performance of fine particles of metallic iron formed from limonite in the decomposition of a low concentration of ammonia
,”
Catal. Lett.
105
(
3–4
),
203
208
(
2005
).
45.
F.
Tessier
,
A.
Navrosky
,
R.
Niewa
,
A.
Leineweber
,
H.
Jacobs
,
S.
Kikkawa
,
M.
Takahashi
,
F.
Kanamarau
, and
F. J.
DiSalvo
, “
Energetics of binary iron nitrides
,”
Solid State Sci.
2
(
4
),
457
462
(
2000
).
46.
C. N. R.
Rao
,
G. U.
Kulkarni
,
P. J.
Thomas
, and
P. P.
Edwards
, “
Size-dependent chemistry: Properties of nanocrystals
,”
Chem. A Eur. J.
8
(
1
),
28
35
(
2002
).
47.
K. K.
Nanda
,
A.
Maisels
,
F. E.
Kruis
,
H.
Fissan
, and
S.
Stappert
, “
Higher surface energy of free nanoparticles
,”
Phys. Rev. Lett.
91
(
10
),
106102
(
2003
).
48.
C.-B.
Rong
,
D.
Li
,
V.
Nandwana
,
N.
Poudyal
,
Y.
Ding
,
Z. L.
Wang
,
H.
Zeng
, and
J. P.
Liu
, “
Size-dependent chemical and magnetic ordering in L10-FePt nanoparticles
,”
Adv. Mater.
18
(
22
),
2984
2988
(
2006
).
49.
A.
Kovács
,
K.
Sato
,
V. K.
Lazarov
,
P. L.
Galindo
,
T. J.
Konno
, and
Y.
Hirotsu
, “
Direct observation of a surface induced disordering process in magnetic nanoparticles
,”
Phys. Rev. Lett.
103
(
11
),
115703
(
2009
).
50.
G.
Amsel
and
D.
Samuel
, “
The mechanism of anodic oxidation
,”
J. Phys. Chem. Solids
23
(
12
),
1707
1718
(
1962
).
51.
G. W. R.
Leibbrandt
,
G.
Hoogers
, and
F. H. P. M.
Habraken
, “
Thin oxide film growth on Fe(100)
,”
Phys. Rev. Lett.
68
(
12
),
1947
1950
(
1992
).
52.
R.
Zulhijah
,
A. B.
Dani Nandiyanto
,
T.
Ogi
,
T.
Iwaki
,
K.
Nakamura
, and
K.
Okuyama
, “
Gas phase preparation of spherical core-shell α″- Fe16N2/SiO2 magnetic nanoparticles
,”
Nanoscale
6
(
12
),
6487
6491
(
2014
).
53.
D.
Li
,
M.
Freitag
,
J.
Pearson
,
Z. Q.
Qiu
, and
S. D.
Bader
, “
Magnetic phases of ultrathin Fe grown on Cu(100) as epitaxial wedges
,”
Phys. Rev. Lett.
72
(
19
),
3112
3115
(
1994
).
54.
P.
Graat
and
M. A. J.
Somers
, “
Quantitative analysis of overlapping XPS peaks by spectrum reconstruction: Determination of the thickness and composition of thin iron oxide films
,”
Surf. Interface Anal.
26
(
11
),
773
782
(
1998
).
55.
E. A.
Shafranovsky
and
Y. I.
Petrov
, “
Aerosol Fe nanoparticles with the passivating oxide shell
,”
J. Nanoparticle Res.
6
(
1
),
71
90
(
2004
).
56.
B.
Yu
,
L.
Lin
,
B.
Ma
,
Z. Z.
Zhang
,
Q. Y.
Jin
, and
J. P.
Wang
, “
Fabrication and physical properties of [Fe/Fe4N]N multilayers with high saturation magnetization
,”
AIP Adv.
6
(
5
),
056108
(
2016
).
57.
W.
Arabczyk
and
R.
Pelka
, “
Studies of the kinetics of two parallel reactions: Ammonia decomposition and nitriding of iron catalyst
,”
J. Phys. Chem. A
113
(
2
),
411
416
(
2009
).
You do not currently have access to this content.