In this work, InGaN/GaN multi-quantum Wells (MQWs) with strain compensating AlGaN interlayers grown by metalorganic vapor-phase epitaxy have been investigated by high-resolution x-ray diffraction, transmission electron microscopy, and photoluminescence (PL). For different AlGaN strain compensating layer thicknesses varying from 0 to 10.6 nm, a detailed x-ray diffraction analysis shows that the MQW stack becomes completely strained on GaN along a and c. The compensation is full from an AlGaN layer thickness of 5.2 nm, and this does not change up to the largest one that has been investigated. In this instance, AlGaN was grown at the same temperature as the GaN barrier, on top of a protective 3 nm GaN. It is found that the crystalline quality of the system is progressively degraded when the thickness of the AlGaN interlayer is increased through strain concentrated domains, which randomly form inside the 3 nm GaN low temperature layer. These domains systematically contribute to a local decrease of the QW thickness and most probably to an efficient localization of carriers. Despite these defects, the PL is highly improved toward the red wavelengths and compares with the reports on ultrathin AlGaN layers where this has been correlated with the improvement of the crystalline quality, although with less strain compensation.

1.
S.
Nakamura
, “
The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes
,”
Science
281
,
956
(
1998
).
2.
P.
Ruterana
,
B.
Barbaray
,
A.
Béré
,
P.
Vermaut
,
A.
Hairie
,
E.
Paumier
,
G.
Nouet
,
A.
Salvador
,
A.
Botchkarev
, and
H.
Morkoç
, “
Formation and stability of the {11–20} stacking fault in wurtzite nitride semiconductors
,”
Phys. Rev. B
59
,
15917
15925
(
1999
).
3.
V.
Potin
,
P.
Ruterana
, and
G.
Nouet
, “
HREM study of stacking faults in GaN layers grown on sapphire substrate
,”
J. Phys.
12
,
10301
(
2000
).
4.
V.
Potin
,
G.
Nouet
, and
P.
Ruterana
, “
The {
101¯0
} inversion domains in GaN/sapphire layers an electron microscopy analysis of the atomic structure of the boundaries
,”
Philos. Mag. A
79
,
2899
(
1998
).
5.
M.
Zhu
,
S.
You
,
T.
Detchprohm
,
T.
Paskova
,
E. A.
Preble
,
D.
Hanser
, and
C.
Wetzel
, “
Inclined dislocation-pair relaxation mechanism in homoepitaxial green GaInN/GaN light-emitting diodes
,”
Phys. Rev. B
81
,
125325
(
2010
).
6.
V.
Potin
,
P.
Ruterana
,
G.
Nouet
,
R. C.
Pond
, and
H.
Morkoç
, “
Mosaic growth of GaN on (0001) sapphire: A high resolution electron microscopy and crystallographic study of dislocations from low angle to high angle grain boundaries
,”
Phys. Rev. B
61
,
5587
(
2000
).
7.
P.
Ruterana
,
V.
Potin
,
B.
Barbaray
, and
G.
Nouet
, “
Growth defects in GaN layers on top of (0001) sapphire: A geometrical analysis of the misfit effect
,”
Philos. Mag. A
80
,
937
(
2000
).
8.
A.
Avramescu
,
T.
Lermer
,
J.
Müller
,
C.
Eichler
,
G.
Bruederl
,
M.
Sabathil
,
S.
Lutgen
, and
U.
Strauss
, “
True green laser diodes at 524 nm with 50 mW continuous wave output power on c-plane GaN
,”
Appl. Phys. Express
3
,
061003
(
2010
).
9.
S.
Li
,
H.
Lei
,
Y.
Wang
,
M. B.
Ullah
,
J.
Chen
,
V.
Avrutin
,
U.
Özgür
,
H.
Morkoç
, and
P.
Ruterana
, “
Polarity control within one monolayer at ZnO/GaN heterointerface:(0001) plane inversion domain boundary
,”
ACS Appl. Mater. Interfaces
10
,
37651
(
2018
).
10.
M.
Adachi
, “
InGaN based green laser diodes on semipolar GaN substrate
,”
Jpn. J. Appl. Phys.
53
,
100207
(
2014
).
11.
T.
Shioda
,
H.
Yoshida
,
K.
Tachibana
,
N.
Sugiyama
, and
S.
Nunoue
, “
Enhanced light output power of green LEDs employing AlGaN interlayer in InGaN/GaN MQW structure on sapphire (0001) substrate
,”
Phys. Status Solidi A
209
,
473
(
2012
).
12.
J. I.
Hwang
,
R.
Hashimoto
,
S.
Saito
, and
S.
Nunoue
, “
Development of InGaN-based red LED grown on (0001) polar surface
,”
Appl. Phys. Express
7
,
071003
(
2014
).
13.
D. D.
Koleske
,
A. J.
Fischer
,
B. N.
Bryant
,
P. G.
Kotula
, and
J. J.
Wierer
, “
On the increased efficiency in InGaN-based multiple quantum wells emitting at 530–590 nm with AlGaN interlayers
,”
J. Cryst. Growth
415
,
57
(
2015
).
14.
S. A.
Al Muyeed
,
W.
Sun
,
X.
Wei
,
R.
Song
,
D. D.
Koleske
,
N.
Tansu
, and
J. J.
Wierer
, “
Strain compensation in InGaN-based multiple quantum wells using AlGaN interlayers
,”
AIP Adv.
7
,
105312
(
2017
).
15.
K.
Lekhal
,
B.
Damilano
,
H. T.
Ngo
,
D.
Rosales
,
P.
De Mierry
,
S.
Hussain
,
P.
Vennéguès
, and
B.
Gil
, “
Strain-compensated (Ga,In)N/(Al,Ga)N/GaN multiple quantum wells for improved yellow/amber light emission
,”
Appl. Phys. Lett.
106
,
142101
(
2015
).
16.
T. H.
Ngo
,
B.
Gil
,
P.
Valvin
,
B.
Damilano
,
K.
Lekhal
, and
P.
De Mierry
, “
Yellow–red emission from (Ga,In)N heterostructures, internal quantum efficiency in yellow-amber light emitting AlGaN-InGaN-GaN heterostructures
,”
Appl. Phys. Lett.
107
,
122103
(
2015
).
17.
P. A.
Grudowski
,
C. J.
Eiting
,
J.
Park
,
B. S.
Shelton
, and
D. J. H.
Lambert
, “
Properties of InGaN quantum-well heterostructures grown on sapphire by metalorganic chemical vapor deposition
,”
Appl. Phys. Lett.
71
,
1537
(
1997
).
18.
A.
Krost
,
J.
Bläsing
,
M.
Lünenbürger
,
H.
Protzmann
, and
M.
Heuken
, “
Evaluation of strain and In content in (InGaN/GaN) multiquantum wells by x-ray analysis
,”
Appl. Phys. Lett.
75
,
689
(
1999
).
19.
M. E.
Vickers
,
M. J.
Kappers
,
T. M.
Smeeton
,
E. J.
Thrush
,
J. S.
Barnard
, and
C. J.
Humphreys
, “
Determination of the indium content and layer thicknesses in InGaN/GaN quantum wells by x-ray scattering
,”
J. Appl. Phys.
94
,
1565
(
2003
).
20.
R.
Ley
,
L.
Chan
,
P.
Shapturenka
,
M.
Wong
,
S.
DenBaars
, and
M.
Gordon
, “
Strain relaxation of InGaN/GaN multi-quantum well light emitters via nanopatterning
,”
Opt. Express
27
,
30081
(
2019
).
21.
S.
Neugebauer
,
S.
Metzner
,
J.
Bläsing
,
F.
Bertram
,
A.
Dadgar
,
J.
Christen
, and
A.
Strittmatter
, “
Polarization engineering of c-plane InGaN quantum wells by pulsed-flow growth of AlInGaN barriers
,”
Phys. Status Solidi B
253
(
1
),
118
(
2016
).
22.
F. C.-P.
Massabuau
,
S.-L.
Sahonta
,
L.
Trinh-Xuan
,
S.
Rhode
,
T. J.
Puchtler
,
M. J.
Kappers
,
C. J.
Humphreys
, and
R. A.
Oliver
, “
Morphological, structural, and emission characterization of trench defects in InGaN/GaN quantum well structures
,”
Appl. Phys. Lett.
101
,
212107
(
2012
).
23.
P. K.
Kandaswamy
,
F.
Guillot
,
E.
Bellet-Amalric
,
E.
Monroy
,
L.
Nevou
,
M.
Tchernycheva
,
A.
Michon
,
F. H.
Julien
,
E.
Baumann
,
F. R.
Giorgetta
,
D.
Hofstetter
,
T.
Remmele
,
M.
Albrecht
,
S.
Birner
, and
L. S.
Dang
, “
GaN/AlN short-period superlattices for intersubband optoelectronics: A systematic study of their epitaxial growth, design, and performance
,”
J. Appl. Phys.
104
,
093501
(
2008
).
24.
P.
Vermaut
,
G.
Nouet
, and
P.
Ruterana
, “
Observation of two atomic configurations for the {
112¯0
} stacking fault in wurtzite (Ga, Al) nitrides
,”
Appl. Phys. Lett.
74
,
694
(
1999
).
25.
H.
Zhao
,
R. A.
Arif
,
Y. K.
Ee
, and
N.
Tansu
, “
Self-consistent analysis of strain compensated InGaN–AlGaN quantum wells for lasers and light-emitting diode
,”
IEEE J. Quantum. Electron.
45
,
66
(
2009
).
26.
Z.
Dridi
,
B.
Bouhafs
, and
P.
Ruterana
, “
First-principles investigation of lattice constants and bowing parameters in wurtzite AlxGa1-xN, InxGa1-xN and InxAl1-xN alloys
,”
Semicond. Sci. Tech.
18
,
850
(
2003
).
27.
M.
Leyer
,
J.
Stellmach
,
C.
Meissner
,
M.
Pristovsek
, and
M.
Kneissl
, “
The critical thickness of InGaN on (0001) GaN
,”
J. Cryst. Growth
310
,
4913
(
2008
).
28.
X. H.
Wu
,
C. R.
Elsass
,
A.
Abare
,
M.
Mack
,
S.
Keller
,
P. M.
Petroff
,
S. P.
DenBaars
,
J. S.
Speck
, and
S. J.
Rosner
, “
Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells
,”
Appl. Phys. Lett.
72
,
692
(
1998
).
29.
P.
Vermaut
,
P.
Ruterana
, and
G.
Nouet
, “
Polarity of epitaxial layers and {
112¯0
} prismatic defects in GaN and AIN grown on the (0001)Si surface of 6H-SiC
,”
Philos. Mag. A
76
,
1215
(
1997
).
30.
H. K.
Cho
,
J. Y.
Lee
,
G. M.
Yang
, and
C. S.
Kim
, “
Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density
,”
Appl. Phys. Lett.
79
,
215
(
2001
).
31.
F. Y.
Meng
,
H.
McFelea
,
R.
Datta
,
U.
Chowdhury
,
C.
Werkhoven
,
C.
Arena
, and
S.
Mahajan
, “
Origin of predominantly a type dislocations in InGaN layers and wells grown on (0001)GaN
,”
J. Appl. Phys.
110
,
073503
(
2011
).
32.
C.
Stampfl
and
C. G.
Van de Walle
, “
Energetics and electronic structure of stacking faults in AlN, GaN, and InN
,”
Phys. Rev. B
57
,
R15052(R)
(
1998
).
33.
J.
Smalc-Koziorowska
,
C.
Bazioti
,
M.
Albrecht
, and
G. P.
Dimitrakopulos
, “
Stacking fault domains as sources of a-type threading dislocations in III-nitride heterostructures
,”
Appl. Phys. Lett.
108
,
051901
(
2016
).
You do not currently have access to this content.