Finding a tight-binding (TB) model for a desired solid is always a challenge that is of great interest when, e.g., studying transport properties. A method is proposed to construct TB models for solids using machine learning (ML) techniques. The approach is based on the LCAO method in combination with Slater–Koster (SK) integrals, which are used to obtain optimal SK parameters. The lattice constant is used to generate training examples to construct a linear ML model. We successfully used this method to find a TB model for BiTeCl, where spin–orbit coupling plays an essential role in its topological behavior.

1.
A. R.
Leach
,
Molecular Modelling: Principles and Applications
(
Harlow
,
Prentice Hall
,
2001
).
2.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
3.
S.
Scandolo
,
P.
Giannozzi
,
C.
Cavazzoni
,
S.
de Gironcoli
,
A.
Pasquarello
, and
S.
Baroni
,
Z. Kristallogr. Cryst. Mater.
220
,
574
(
2005
).
4.
T.
Ozaki
,
Phys. Rev. B
67
,
155108
(
2003
).
5.
X.
Gonze
,
J. M.
Beuken
,
R.
Caracas
,
F.
Detraux
,
M.
Fuchs
,
G. M.
Rignanese
,
L.
Sindic
,
M.
Verstraete
,
G.
Zerah
,
F.
Jollet
, and
M.
Torrent
,
Comput. Mater. Sci.
25
,
478
(
2002
).
6.
T.
Clark
and
R. B.
Koch
,
Machine Learning: A Probabilistic Perspective
(
Springer Science
,
Berlin
,
2013
).
7.
G. J.
Ackland
,
M. W.
Finnis
, and
V.
Vitek
,
J. Phys. F Met. Phys.
18
,
153
(
1988
).
8.
C. M.
Goringedag
,
D. R.
Bowlerdag
, and
E.
Hernándezddag
,
Rep. Prog. Phys.
60
(
12
),
1447
(
1997
).
9.
V.
Vapnik
, “
Pattern recognition using generalized portrait method
,”
Autom. Remote Control
24
,
774
(
1963
).
10.
K. P.
Murphy
,
Machine Learning: A Probabilistic Perspective
(
MIT Press
,
Cambridge, MA
,
2013
).
11.
L. F.
Arsenault
,
A.
Lopez-Bezanilla
,
O. A.
von Lilienfeld
, and
A. J.
Millis
, “
Machine learning for many-body physics: The case of the Anderson impurity model
,”
Phys. Rev. B
90
,
155136
(
2014
).
12.
L. M.
Ghiringhelli
,
J.
Vybiral
,
S. V.
Levchenko
,
C.
Draxl
, and
M.
Scheffler
, “
Big data of materials science: Critical role of the descriptor
,”
Phys. Rev. Lett.
114
,
105503
(
2015
).
13.
S. S.
Schoenholz
,
E. D.
Cubuk
,
D. M.
Sussman
,
E.
Kaxiras
, and
A. J.
Liu
, “
A structural approach to relaxation in glassy liquids
,”
Nat. Phys.
12
,
469
(
2016
).
14.
G.
Pilania
,
A.
Mannodi-Kanakkithodi
,
B. P.
Uberuaga
,
R.
Ramprasad
,
J. E.
Gubernatis
, and
T.
Lookman
, “
Machine learning bandgaps of double perovskites
,”
Sci. Rep.
6
,
19375
(
2016
).
15.
J.
Lee
,
A.
Seko
,
K.
Shitara
,
K.
Nakayama
, and
I.
Tanaka
, “
Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques
,”
Phys. Rev. B
93
,
115104
(
2016
).
16.
J. C.
Snyder
,
M.
Rupp
,
K.
Hansen
,
K. R.
Müller
, and
K.
Burke
, “
Finding density functionals with machine learning
,”
Phys. Rev. Lett.
108
,
253002
(
2012
).
17.
A. P.
Bartók
,
M. J.
Gillan
,
F. R.
Manby
, and
G.
Csányi
, “
Machine-learning approach for one-and two-body corrections to density functional theory: Applications to molecular and condensed water
,”
Phys. Rev. B
88
,
054104
(
2013
).
18.
J.
Carrasquilla
and
R. G.
Melko
, “
Machine learning phases of matter
,”
Nat. Phys.
13
,
431
(
2017
).
19.
G.
Hegde
and
R. C.
Bowen
,
Sci. Rep.
7
,
42669
(
2017
).
20.
H.
Li
,
C.
Collins
,
M.
Tanha
,
G. J.
Gordon
, and
D. J.
Yaron
,
J. Chem. Theory Comput.
14
,
5764
(
2018
).
21.
K. T.
Schütt
,
M.
Gastegger
,
A.
Tkatchenko
,
K. R.
Müller
, and
R. J.
Maurer
,
Nat. Commun.
10
,
1
(
2019
).
22.
S. J.
Russell
and
P.
Norvig
,
Artificial Intelligence: A Modern Approach
(
Pearson Education Limited
,
Malaysia
,
2016
).
23.
M.
Mohri
,
A.
Rostamizadeh
, and
A.
Talwalkar
,
Foundations of Machine Learning
(
MIT Press
,
Cambridge, MA
,
2012
).
24.
J. C.
Slater
and
G. F.
Koster
, “
Simplified LCAO method for the periodic potential problem
,”
Phys. Rev.
94
,
1498
(
1954
).
25.
M.
Nakhaee
,
S. A.
Ketabi
, and
F. M.
Peeters
, “
Tight-binding model for borophene and borophane
,”
Phys. Rev. B
97
,
125424
(
2018
).
26.
M.
Nakhaee
,
S. A.
Ketabi
, and
F. M.
Peeters
, “
Dirac nodal line in bilayer borophene: Tight-binding model and low-energy effective Hamiltonian
,”
Phys. Rev. B
98
,
115413
(
2018
).
27.
F.
Pedregosa
,
G.
Varoquaux
,
A.
Gramfort
,
V.
Michel
,
B.
Thirion
,
O.
Grisel
,
M.
Blondel
,
P.
Prettenhofer
,
R.
Weiss
,
V.
Dubourg
, and
J.
Vanderplas
, “
Scikit-learn: Machine learning in python
,”
J. Mach. Learn. Res.
12
,
2825
(
2011
).
28.
K.
Levenberg
, “
A method for the solution of certain non-linear problems in least squares
,”
Q. Appl. Math.
2
,
164
(
1944
).
29.
C. M.
Goringe
,
D. R.
Bowler
, and
E.
Hernandez
, “
Tight-binding modelling of materials
,”
Rep. Prog. Phys.
60
,
1447
(
1997
).
30.
T. O.
Kvålseth
,
Am. Stat.
39
,
279
(
1985
).
31.
Z.
Yue
,
B.
Cai
,
L.
Wang
,
X.
Wang
, and
M.
Gu
, “
Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index
,”
Sci. Adv.
2
,
e1501536
(
2016
).
32.
Z.
Yue
,
G.
Xue
,
J.
Liu
,
Y.
Wang
, and
M.
Gu
, “
Nanometric holograms based on a topological insulator material
,”
Nat. Commun.
8
,
15354
(
2017
).
33.
M.
König
,
S.
Wiedmann
,
C.
Brüne
,
A.
Roth
,
H.
Buhmann
,
L. W.
Molenkamp
,
X. L.
Qi
, and
S. C.
Zhang
, “
Quantum spin Hall insulator state in HgTe quantum wells
,”
Science
318
,
766
(
2007
).
34.
C. Z.
Chang
,
J.
Zhang
,
X.
Feng
,
J.
Shen
,
Z.
Zhang
,
M.
Guo
,
K.
Li
,
Y.
Ou
,
P.
Wei
,
L. L.
Wang
, and
Z. Q.
Ji
, “
Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator
,”
Science
340
,
167
(
2013
).
35.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
36.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
(
1988
).
37.
M.
Nakhaee
,
S. A.
Ketabi
, and
F. M.
Peeters
, “
Tight-binding studio: A technical software package to find the parameters of tight-binding Hamiltonian
,”
Comput. Phys. Commun.
254
,
107379
(
2020
).
38.
S.
Konschuh
,
M.
Gmitra
, and
J.
Fabian
, “
Tight-binding theory of the spin-orbit coupling in graphene
,”
Phys. Rev. B
82
,
245412
(
2010
).
39.
M.
Nakhaee
(
2020
). “
Machine learning approach to predict SK parameters
,” (Version 1.0.0). Zenodo.
You do not currently have access to this content.