In this study, we studied how to connect a thermoacoustic engine (TAE) and an impulse turbine to construct a thermoacoustic generator for converting thermal energy into electric power. The thermoacoustic generator was separated into two sub-systems: (1) system A, which consisted of a looped-tube TAE and a branch tube, and (2) system B, which consisted of an impulse turbine loop and a branch tube. The sub-systems were evaluated individually using an acoustic driver to determine the driving conditions such as branch length, driving frequency, and temperature for the connected system. In system A, which included the TAE, the change in specific acoustic impedance was small with respect to the velocity amplitude. However, in system B, which included the impulse turbine, the change in specific acoustic impedance with respect to the velocity amplitude was nonlinear. The sub-systems were connected by branch pipes, whose lengths were determined from the individual sub-system evaluation results, and the device was confirmed to self-oscillate at the driving temperature. When the device was operated at the driving conditions, the frequency, velocity amplitude, and specific acoustic impedance with self-oscillation were the same as those of the individual sub-systems. This also confirms the validity of evaluating the TAE and impulse turbine separately.

1.
P. H.
Ceperley
,
J. Acoust. Soc. Am.
66
,
1508
(
1979
).
3.
S.
Backhaus
and
G. W.
Swift
,
Nature
399
,
335
(
1999
).
4.
S.
Backhaus
,
E.
Tward
, and
M.
Petach
,
Appl. Phys. Lett.
85
,
1085
(
2004
).
5.
T.
Jin
,
J.
Huang
,
Y.
Feng
,
R.
Yang
,
K.
Tang
, and
R.
Radebaugh
,
Energy
93
,
828
(
2015
).
6.
Y.
Wang
,
Z.
Li
, and
Q.
Li
,
Energy Convers. Manag.
110
,
135
(
2016
).
7.
A.
Kruse
,
T.
Schmiel
, and
M.
Tajmar
,
Energy Convers. Manag.
177
,
292
(
2018
).
8.
G.
Chen
,
L.
Tang
, and
B. R.
Mace
,
Appl. Therm. Eng.
150
,
532
(
2019
).
9.
Z.
Yu
,
A. J.
Jaworski
, and
S.
Backhaus
,
Appl. Energy
99
,
135
(
2012
).
10.
Z.
Wu
,
L.
Zhang
,
W.
Dai
, and
E.
Luo
,
Appl. Energy
124
,
140
(
2014
).
11.
K.
Wang
,
D.
Sun
,
J.
Zhang
,
Y.
Xu
,
J.
Zou
,
K.
Wu
,
L.
Qiu
, and
Z.
Huang
,
Appl. Energy
160
,
853
(
2015
).
12.
K.
Wang
,
D.
Sun
,
J.
Zhang
,
Y.
Xu
,
K.
Luo
,
N.
Zhang
,
J.
Zou
, and
L.
Qiu
,
Energy
103
,
313
(
2016
).
13.
T.
Bi
,
Z.
Wu
,
L.
Zhang
,
G.
Yu
,
E.
Luo
, and
W.
Dai
,
Appl. Energy
185
,
1355
(
2017
).
14.
C. M.
De Blok
,
P.
Owczarek
, and
M.
Francois
, in 9th PAMIR International Conference (Riga, Latvia,
2014
), pp. 433–438.
15.
A. I.
Dovgjallo
and
A. A.
Shimanov
,
VESTNIK SSAU
14
,
132
(
2015
).
16.
D.
Liu
,
Y.
Chen
,
W.
Dai
, and
E.
Luo
,
Energy Procedia
158
,
1986
(
2019
).
17.
M. A. G.
Timmer
and
T. H.
van der Meer
,
J. Acoust. Soc. Am.
146
,
3524
(
2019
).
18.
T.
Setoguchi
,
S.
Santhakumar
,
H.
Maeda
,
M.
Takao
, and
K.
Kaneko
,
Renew. Energy
23
,
261
(
2001
).
19.
T.
Setoguchi
,
M.
Takao
,
S.
Santhakumar
, and
K.
Kaneko
,
J. Offshore Mech. Arct. Eng.
126
,
137
(
2004
).
20.
M.
Takao
,
Y.
Fujioka
, and
T.
Setoguchi
,
Ocean Eng.
32
,
2079
(
2005
).
21.
M.
Takao
,
E.
Sato
,
T.
Takeuchi
,
S.
Nagata
,
K.
Toyota
, and
T.
Setoguchi
, in
Proceedings of International Symposium on EcoTopia Science 2007
(Nagoya Univ., Japan,
2007
), pp.
211
215
.
22.
A. F. O.
Falcão
and
J. C. C.
Henriques
,
Renew. Energy
85
,
1391
(
2016
).
23.
M. A. G.
Timmer
and
T. H.
van der Meer
,
J. Acoust. Soc. Am.
147
,
2348
(
2020
).
24.
H.
Hatori
,
T.
Biwa
, and
T.
Yazaki
,
J. Appl. Phys.
111
,
074905
(
2012
).
25.
S.
Hasegawa
,
J. Jpn. Inst. Energy
92
,
1111
(
2013
) [In Japanese].
26.
T.
Biwa
,
Y.
Tashiro
,
H.
Nomura
,
Y.
Ueda
, and
T.
Yazaki
,
J. Acoust. Soc. Am.
124
,
1584
(
2008
).
27.
T.
Yoshida
,
T.
Yazaki
,
Y.
Ueda
, and
T.
Biwa
,
J. Phys. Soc. Jpn.
82
,
103001
(
2013
).
You do not currently have access to this content.