Model refinements for the edge illumination x-ray phase contrast imaging method have been developed to improve simulation accuracy for high energy, polychromatic beams. High-energy x rays are desirable in imaging due to their penetrative power and, for biological samples, their lower dose deposition rate. Accurate models of such scenarios are required for designing appropriate imaging systems and to predict signal strength in complex settings such as clinical imaging or industrial quality assurance. When using optical components appropriate for high-energy x rays in a non-synchrotron setting, system performance was observed to deviate from that predicted by existing models. In this work, experimental data utilizing increasing thicknesses of a known filter material are used to illustrate the limitations of existing models and as validation for the new modeling features. Angular filtration of the cone beam was observed to be the most significant effect; however, specific features of the source and detector are also shown to affect system performance. We conclude by showing that a significantly improved agreement between experimental and simulated data is obtained with the refined model compared to previously existing ones.

1.
T.
Thüring
,
M.
Abis
,
Z.
Wang
,
C.
David
, and
M.
Stampanoni
, “
X-ray phase-contrast imaging at 100 keV on a conventional source
,”
Sci. Rep.
4
,
5198
(
2015
).
2.
F.
Horn
,
M.
Leghissa
,
S.
Kaeppler
,
G.
Pelzer
,
J.
Rieger
,
M.
Seifert
,
J.
Wandner
,
T.
Weber
,
T.
Michel
,
C.
Riess
, and
G.
Anton
, “
Implementation of a Talbot-Lau interferometer in a clinical-like c-arm setup: A feasibility study
,”
Sci. Rep.
8
,
2325
(
2018
).
3.
L. B.
Gromann
,
F.
De Marco
,
K.
Willer
,
P. B.
Noël
,
K.
Scherer
,
B.
Renger
,
B.
Gleich
,
K.
Achterhold
,
A. A.
Fingerle
,
D.
Muenzel
,
S.
Auweter
,
K.
Hellbach
,
M.
Reiser
,
A.
Baehr
,
M.
Dmochewitz
,
T. J.
Schroeter
,
F. J.
Koch
,
P.
Meyer
,
D.
Kunka
,
J.
Mohr
,
A.
Yaroshenko
,
H.-I.
Maack
,
T.
Pralow
,
H.
van der Heijden
,
R.
Proksa
,
T.
Koehler
,
N.
Wieberneit
,
K.
Rindt
,
E. J.
Rummeny
,
F.
Pfeiffer
, and
J.
Herzen
, “
In-vivo x-ray dark-field chest radiography of a pig
,”
Sci. Rep.
7
(
1
),
4807
(
2017
).
4.
D.
Paganin
,
Coherent X-Ray Optics
(
Oxford University Press
,
2006
).
5.
T. P.
Millard
,
M.
Endrizzi
,
N.
Everdell
,
L.
Rigon
,
F.
Arfelli
,
R. H.
Menk
,
E.
Stride
, and
A.
Olivo
, “
Evaluation of microbubble contrast agents for dynamic imaging with x-ray phase contrast
,”
Sci. Rep.
5
(
1
),
12509
(
2015
).
6.
P.
Meyer
and
J.
Schulz
, “
Deep x-ray lithography
,” in
Micro-manufacturing Engineering and Technology: Micro and Nano Technologies
, edited by Y. Qin, 2nd ed. (
William Andrew Publishing
,
Boston
,
2015
), Chap. 16, pp.
365
391
.
7.
P.
Meyer
,
T.
Beckenbach
,
F.
An
,
T.
Schröter
,
J.
Schulz
, and
J.
Mohr
,
X-ray Gratings for Grating-Based X-ray DPCI Fabricated Using the Deep X-ray Lithography Process: State of the Art
(
2017
).
8.
M.
Endrizzi
,
P. C.
Diemoz
,
T. P.
Millard
,
J.
Louise Jones
,
R. D.
Speller
,
I. K.
Robinson
, and
A.
Olivo
, “
Hard x-ray dark-field imaging with incoherent sample illumination
,”
Appl. Phys. Lett.
104
(
2
),
3
6
(
2014
).
9.
P. C.
Diemoz
,
F. A.
Vittoria
,
C. K.
Hagen
,
M.
Endrizzi
,
P.
Coan
,
A.
Bravin
,
U. H.
Wagner
,
C.
Rau
,
I. K.
Robinson
, and
A.
Olivo
, “
A single-image retrieval method for edge illumination x-ray phase-contrast imaging: Application and noise analysis
,”
Phys. Med.
32
(
12
),
1759
1764
(
2016
).
10.
I.
Buchanan
,
A.
Mittone
,
A.
Bravin
,
P.
Diemoz
,
M.
Endrizzi
, and
A.
Olivo
, “
Simplified retrieval method for edge illumination x-ray phase contrast imaging allowing multi-modal imaging with fewer input frames
,”
Opt. Express
28
(
8
),
11597
11608
(
2020
).
11.
F. A.
Vittoria
,
P. C.
Diemoz
,
M.
Endrizzi
,
L.
Rigon
,
F. C.
Lopez
,
D.
Dreossi
,
P. R. T.
Munro
, and
A.
Olivo
, “
Strategies for efficient and fast wave optics simulation of coded-aperture and other x-ray phase-contrast imaging methods
,”
Appl. Opt.
52
,
6940
6947
(
2013
).
12.
T. P.
Millard
,
M.
Endrizzi
,
P. C.
Diemoz
,
C. K.
Hagen
, and
A.
Olivo
, “
Monte Carlo model of a polychromatic laboratory based edge illumination x-ray phase contrast system
,”
Rev. Sci. Instrum.
85
(
5
),
053702
(
2014
).
13.
A. M.
Hernandez
and
J. M.
Boone
, “
Tungsten anode spectral model using interpolating cubic splines: Unfiltered x-ray spectra from 20 kV to 640 kV
,”
Med. Phys.
41
(
4
),
042101
(
2014
).
14.
T.
Schoonjans
,
A.
Brunetti
,
B.
Golosio
,
M.
Sanchez Del Rio
,
V. A.
Sole
,
C.
Ferrero
, and
L.
Vincze
, “
The xraylib library for x-ray-matter interactions. Recent developments
,”
Spectrochim. Acta, Part B
66
(
11–12
),
776
784
(
2011
).
15.
P. A.
Kohl
, “
Electrodeposition of gold
,” in
Modern Electroplating
, edited by M. Schlesinger and M. Paunovic (
John Wiley & Sons, Inc.
,
Hoboken
,
NJ
,
2011
), pp.
115
130
.
16.
G.
Holmbom
and
B. E.
Jacobson
, “
Nucleation and initial growth of pulse-plated gold on crystalline and amorphous substrates
,”
J. Electrochem. Soc.
135
(
11
),
2720
2725
(
1988
).
17.
H.
Angerer
and
N.
Ibl
, “
On the electrodeposition of hard gold
,”
J. Appl. Electrochem.
9
(
2
),
219
232
(
1979
).
18.
R.
Bellazzini
,
G.
Spandre
,
A.
Brez
,
M.
Minuti
,
M.
Pinchera
, and
P.
Mozzo
, “
Chromatic x-ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC
,”
J. Instrum.
8
(
02
),
C02028
(
2013
).
19.
E.
Knudsen
,
A.
Prodi
,
J.
Baltser
,
M.
Thomsen
,
P.
Willendrup
,
M.
Sánchez del Ro
,
C.
Ferrero
,
E.
Farhi
,
K.
Haldrup
,
A.
Vickery
,
R.
Feidenhans’l
,
K.
Mortensen
,
M.
Nielsen
,
H. F.
Poulsen
,
S.
Schmidt
, and
K.
Lefmann
, “
McXtrace: A Monte Carlo software package for simulating x-ray optics, beamlines and experiments
,”
J. Appl. Crystallogr.
46
,
679
696
(
2013
).
20.
A.
Erko
,
V.
Arkadiev
,
A.
Bjeoumikhov
,
A.
Antonov
,
B.
Beckhoff
,
I.
Grigorieva
,
H. B.
Kanngießer
, and
B.
Vidal
,
X-Ray Optics
(
Springer
,
Berlin
,
2006
), pp.
85
198
.
21.
P. R. T.
Munro
, “
Rigorous multi-slice wave optical simulation of x-ray propagation in inhomogeneous space
,”
J. Opt. Soc. Am. A
36
(
7
),
1197
1208
(
2019
).
22.
A.
Vincenzi
,
P. L.
de Ruvo
,
P.
Delogu
,
R.
Bellazzini
,
A.
Brez
,
M.
Minuti
,
M.
Pinchera
, and
G.
Spandre
, “
Energy characterization of pixirad-1 photon counting detector system
,”
J. Instrum.
10
(
04
),
C04010
(
2015
).
23.
K.
Iniewski
,
H.
Chen
,
G.
Bindley
,
I.
Kuvvetli
, and
C.
Budtz-Jørgensen
,
Modeling Charge-Sharing Effects in Pixellated CZT Detectors
(IEEE,
2007
), Vol. 6, pp.
4608
4611
.
24.
S.
Awadalla
,
Solid-State Radiation Detectors
, 1st ed. (CRC Press,
2017
).
25.
P. C.
Diemoz
,
C. K.
Hagen
,
M.
Endrizzi
, and
A.
Olivo
, “
Sensitivity of laboratory based implementations of edge illumination x-ray phase-contrast imaging
,”
Appl. Phys. Lett.
103
(
24
),
244104
(
2013
).
26.
M.
Busi
,
U. L.
Olsen
,
E. B.
Knudsen
,
J. R.
Frisvad
,
J.
Kehres
,
E. S.
Dreier
,
M.
Khalil
, and
K.
Haldrup
, “
Simulation tools for scattering corrections in spectrally resolved x-ray computed tomography using McXtrace
,”
Opt. Eng.
57
(
3
),
037105
(
2018
).
27.
M. S.
Beni
,
D.
Krstic
,
D.
Nikezic
, and
K. N.
Yu
, “
Monte Carlo studies on photon interactions in radiobiological experiments
,”
PLOS One
13
(
3
),
e0193575
(
2018
).
28.
P. C.
Diemoz
,
F. A.
Vittoria
,
C. K.
Hagen
,
M.
Endrizzi
,
P.
Coan
,
E.
Brun
,
U. H.
Wagner
,
C.
Rau
,
I. K.
Robinson
,
A.
Bravin
, and
A.
Olivo
, “
Single-image phase retrieval using an edge illumination x-ray phase-contrast imaging setup
,”
J. Synchrotron Radiat.
22
(
4
),
1072
1077
(
2015
).
You do not currently have access to this content.