The ferroelectric, ferroelastic, and dielectric properties as well as the crystal structure were investigated for polycrystalline donor doped lead zirconate titanate (PZT) with grain sizes ranging from 0.25 to 5 μm, which were prepared using a novel zirconium titanium hydrate precursor (ZTH) with a specific surface area of 310 m2/g. Piezoforce microscopy was used to investigate the change in the domain structure, revealing a change in the domain configuration from a complex 3D structure to a simple lamellar domain formation at a 1 μm grain size that corresponded to a rapidly increasing internal mechanical stress observed with in situ synchrotron x-ray experiments. The correlation between the change in domain configuration, increasing internal stresses, effects of poling on the crystal structure, and the macroscopic ferroelectric and ferroelastic properties are discussed in detail, allowing a deeper understanding of size effects in polycrystalline donor doped PZT ceramics.

1.
J.
Rödel
,
W.
Jo
,
K. T. P.
Seifert
,
E.-M.
Anton
,
T.
Granzow
, and
D.
Damjanovic
, “
Perspective on the development of lead-free piezoceramics
,”
J. Am. Ceram. Soc.
92
,
1153
(
2009
).
2.
M.
Hinterstein
,
M.
Hoelzel
,
J.
Rouquette
,
J.
Haines
,
J.
Glaum
,
H.
Kungl
, and
M.
Hoffman
, “
Interplay of strain mechanisms in morphotropic piezoceramics
,”
Acta Mater.
94
,
319
(
2015
).
3.
M.
Hinterstein
,
K.-Y.
Lee
,
S.
Esslinger
,
J.
Glaum
,
A. J.
Studer
,
M.
Hoffman
, and
M. J.
Hoffmann
, “
Determining fundamental properties from diffraction: Electric field induced strain and piezoelectric coefficient
,”
Phys. Rev. B
99
,
174107
(
2019
).
4.
S.
Eßlinger
,
P.
Neumeister
,
A.
Schönecker
,
M.
Hoffman
,
A.
Studer
, and
M.
Hinterstein
, “
In situ neutron diffraction studies on poling of the hard PZT ceramic PIC181
,”
Adv. Eng. Mater.
21
,
1900159
(
2019
).
5.
M.
Oldenkotte
,
H.
Kungl
,
R.
Eichel
,
K. A.
Schönau
,
M.
Kühlein
,
T.
Bernard
,
M. J.
Hoffmann
, and
M.
Hinterstein
, “
Influence of PbO stoichiometry on the properties of PZT ceramics and multilayer actuators
,”
J. Am. Ceram. Soc.
102
,
5401
(
2019
).
6.
D.
Ghosh
,
A.
Sakata
,
J.
Carter
,
P. A.
Thomas
,
H.
Han
,
J. C.
Nino
, and
J. L.
Jones
, “
Domain wall displacement is the origin of superior permittivity and piezoelectricity in BaTiO3 at intermediate grain sizes
,”
Adv. Funct. Mater.
24
,
885
(
2014
).
7.
W.
Cao
and
C. A.
Randall
, “
Grain size and domain size relations in bulk ceramic ferroelectric materials
,”
J. Phys. Chem. Solids
57
,
1499
(
1996
).
8.
C.
Sakaki
,
B. L.
Newalkar
,
S.
Komarneni
, and
K.
Uchino
, “
Grain size dependence of high power piezoelectric characteristics in Nb doped lead zirconate titanate oxide ceramics
,”
Jpn. J. Appl. Phys.
40
,
6907
(
2001
).
9.
K.
Kinoshita
and
A.
Yamaji
, “
Grain-size effects on dielectric properties in barium titanate ceramics
,”
J. Appl. Phys.
47
,
371
(
1976
).
10.
V.
Buscaglia
and
C. A.
Randall
, “
Size and scaling effects in barium titanate: An overview
,”
J. Eur. Ceram. Soc.
40
,
3744
(
2020
).
11.
T. M.
Shaw
,
S.
Trolier-McKinstry
, and
P. C.
McIntyre
, “
The properties of ferroelectric films at small dimensions
,”
Annu. Rev. Mater. Sci.
30
,
263
(
2000
).
12.
K. A.
Schoenau
,
L. A.
Schmitt
,
M.
Knapp
,
H.
Fuess
,
R.-A.
Eichel
,
H.
Kungl
, and
M. J.
Hoffmann
, “
Nanodomain structure of Pb[Zr1−xTix]O3 at its morphotropic phase boundary: Investigations from local to average structure
,”
Phys. Rev. B
75
,
184117
(
2007
).
13.
M.
Hinterstein
,
K. A.
Schoenau
,
J.
Kling
,
H.
Fuess
,
M.
Knapp
,
H.
Kungl
, and
M. J.
Hoffmann
, “
Influence of lanthanum doping on the morphotropic phase boundary of lead zirconate titanate
,”
J. Appl. Phys.
108
,
024110
(
2010
).
14.
G.
Arlt
and
K.
Okada
, “
Twinning in ferroelectric and ferroelastic ceramics: Stress relief
,”
J. Mater. Sci.
25
,
2655
(
1990
).
15.
C. A.
Randall
,
N.
Kim
,
J.
Kucera
,
W.
Cao
, and
T. R.
Shrout
, “
Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics
,”
J. Am. Ceram. Soc.
81
,
677
(
1998
).
16.
A. S.
Sonin
and
B. A.
Strukov
,
Einführung in Die Ferroelektrizität
(
Vieweg
,
1974
).
17.
T.
Mitsui
,
I.
Tatsuzaki
, and
E.
Nakamura
,
An Introduction to the Physics of Ferroelectrics
(
Gordon and Breach Science Publishers
,
New York
,
1976
).
18.
I.
MacLaren
,
L. A.
Schmitt
,
H.
Fuess
,
H.
Kungl
, and
M. J.
Hoffmann
, “
Experimental measurement of stress at a four-domain junction in lead zirconate titanate
,”
J. Appl. Phys.
97
,
094102
(
2005
).
19.
R.
Waser
,
U.
Böttger
, and
S.
Tiedke
,
Polar Oxides: Properties, Characterization, and Imaging
(
Wiley
,
2006
).
20.
G.
Arlt
, “
The role of domain walls on the dielectric, elastic and piezoelectric properties of ferroelectric ceramics
,”
Ferroelectrics
76
,
451
(
1987
).
21.
G.
Arlt
and
P.
Sasko
, “
Domain configuration and equilibrium size of domains in BaTiO3 ceramics
,”
J. Appl. Phys.
51
,
4956
(
1980
).
22.
E. K. W.
Goo
,
R. K.
Mishra
, and
G.
Thomas
, “
Electron microscopy study of the ferroelectric domains and domain wall structure in PbZr0.52Ti0.48O3
,”
J. Appl. Phys.
52
,
2940
(
1981
).
23.
W.
Cao
and
L.
Cross
, “
Theory of tetragonal twin structures in ferroelectric perovskites with a first-order phase transition
,”
Phys. Rev. B
44
,
5
(
1991
).
24.
U.
Lange
,
Einfluß Der Korngröße Auf Die Morphotrope Phasengrenze in Sol-Gel Abgeleiteten Nd-Dotierten PZT-Keramiken
(
Universität Würzburg
,
2003
).
25.
M. J.
Hoffmann
,
M.
Hammer
,
A.
Endriss
, and
D. C.
Lupascu
, “
Correlation between microstructure, strain behavior, and acoustic emission of soft PZT ceramics
,”
Acta Mater.
49
,
1301
(
2001
).
26.
G.
Auer
,
H.
Günnel
,
F.
Hipler
,
M. J.
Hoffmann
,
S.
Wagner
, and
H.
Kungl
, “
Fine-particulate lead zirconium titanates zirconium titanate hydrates and zirconium titanates and method for production thereof
,” U.S. patent US8080230B2 (Dec. 20, 2011).
27.
A. P.
Singh
,
S. K.
Mishra
,
D.
Pandey
,
C. D.
Prasad
, and
R.
Lal
, “
Low-temperature synthesis of chemically homogeneous lead zirconate titanate (PZT) powders by a semi-wet method
,”
J. Mater. Sci.
28
,
5050
(
1993
).
28.
T. R.
Shrout
,
P.
Papet
,
S.
Kim
, and
G.-S.
Lee
, “
Conventionally prepared submicrometer lead-based perovskite powders by reactive calcination
,”
J. Am. Ceram. Soc.
73
,
1862
(
1990
).
29.
R. B.
Atkin
and
R. M.
Fulrath
, “
Point defects and sintering of lead zirconate-titanate
,”
J. Am. Ceram. Soc.
54
,
265
(
1971
).
30.
M.
Herklotz
,
F.
Scheiba
,
M.
Hinterstein
,
K.
Nikolowski
,
M.
Knapp
,
A.-C.
Dippel
,
L.
Giebeler
,
J.
Eckert
, and
H.
Ehrenberg
, “
Advances in in situ powder diffraction of battery materials: A case study of the new beamline P02.1 at DESY, Hamburg
,”
J. Appl. Crystallogr.
46
,
1117
(
2013
).
31.
A.
Dippel
,
H.
Liermann
,
J. T.
Delitz
,
P.
Walter
,
H.
Schulte-Schrepping
,
O. H.
Seeck
, and
H.
Franz
, “
Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction
,”
J. Synchrotr. Radiat.
22
,
675
(
2015
).
32.
H.
Choe
,
S.
Gorfman
,
M.
Hinterstein
,
M.
Ziolkowski
,
M.
Knapp
,
S.
Heidbrink
,
M.
Vogt
,
J.
Bednarcik
,
A.
Berghäuser
,
H.
Ehrenberg
, and
U.
Pietsch
, “
Combining high time and angular resolutions: Time-resolved X-ray powder diffraction using a multi-channel analyser detector
,”
J. Appl. Crystallogr.
48
,
970
(
2015
).
33.
K.-Y.
Lee
,
X.
Shi
,
N.
Kumar
,
M.
Hoffman
,
M.
Etter
,
S.
Checchia
,
J.
Winter
,
L.
Lemos da Silva
,
D.
Seifert
,
M.
Hinterstein
,
L. L.
da Silva
,
D.
Seifert
, and
M.
Hinterstein
, “
Electric-field-induced phase transformation and frequency-dependent behavior of bismuth sodium titanate–barium titanate
,”
Materials
13
,
1054
(
2020
).
34.
L.
Lutterotti
,
S.
Matthies
,
D.
Chateigner
,
S.
Ferrari
, and
J.
Ricote
, “
Rietveld texture and stress analysis of thin films by X-ray diffraction
,”
Mater. Sci. Forum
408–412
,
1603
(
2002
).
35.
K. G.
Webber
,
E.
Aulbach
,
T.
Key
,
M.
Marsilius
,
T.
Granzow
, and
J.
Rödel
, “
Temperature-dependent ferroelastic switching of soft lead zirconate titanate
,”
Acta Mater.
57
,
4614
(
2009
).
36.
M. E.
Lines
and
A. M.
Glass
,
Principles and Applications of Ferroelectrics and Related Materials
(
Oxford University Press
,
Clarendon
,
1977
).
37.
T.
Mitsui
and
J.
Furuichi
, “
Domain structure of Rochelle salt and KH2PO4
,”
Phys. Rev.
90
,
193
(
1953
).
38.
C.
Kittel
, “
Theory of the structure of ferromagnetic domains in films and small particles
,”
Phys. Rev.
70
,
965
(
1946
).
39.
U. J.
Sutter
,
Domäneneffekte in Ferroelektrischen PZT-Keramiken
(
Universitat Karlsruhe
,
2006
).
40.
G.
Picht
,
Einfluss Der Korngröße Auf Ferroelektrische Eigenschaften Dotierter Pb(Zr1-XTix)O3 Materialien
(
KIT Scientific Publishing
,
2013
).
41.
G.
Fraysse
,
A.
Al-Zein
,
J.
Haines
,
J.
Rouquette
,
V.
Bornand
,
P.
Papet
,
C.
Bogicevic
, and
S.
Hull
, “
Competing order parameters in the Pb(Zr1−xTix)O3 solid solution at high pressure
,”
Phys. Rev. B
84
,
1
(
2011
).
42.
F.
Birch
, “
Finite elastic strain of cubic crystals
,”
Phys. Rev.
71
,
809
(
1947
).
43.
G.
Esteves
,
C. M.
Fancher
,
S.
Röhrig
,
G. A.
Maier
,
J. L.
Jones
, and
M.
Deluca
, “
Electric-field-induced structural changes in multilayer piezoelectric actuators during electrical and mechanical loading
,”
Acta Mater.
132
,
96
(
2017
).
44.
M.
Hinterstein
,
J.
Rouquette
,
J.
Haines
,
P.
Papet
,
J.
Glaum
,
M.
Knapp
,
J.
Eckert
, and
M.
Hoffman
, “
Structural contribution to the ferroelectric fatigue in lead zirconate titanate ceramics
,”
Phys. Rev. B
90
,
094113
(
2014
).
45.
M.
Hinterstein
,
J.
Rouquette
,
J.
Haines
,
P.
Papet
,
M.
Knapp
,
J.
Glaum
, and
H.
Fuess
, “
Structural description of the macroscopic piezo- and ferroelectric properties of lead zirconate titanate
,”
Phys. Rev. Lett.
107
,
077602
(
2011
).
46.
H.
Kungl
,
Dehnungsverhalten von Morphotropem PZT
(
Universitat Karlsruhe
,
2005
).
47.
H.
Kungl
and
M. J.
Hoffmann
, “
Effects of sintering temperature on microstructure and high field strain of niobium-strontium doped morphotropic lead zirconate titanate
,”
J. Appl. Phys.
107
,
054111
(
2010
).
48.
T.
Yamamoto
, “
Optimum preparation methods for piezoelectric ceramics and their evaluation
,”
Am. Ceram. Soc. Bull.
71
,
96
(
1992
).
49.
W.
Wersing
,
W.
Heywang
,
H.
Beige
, and
H.
Thomann
, “
The role of ferroelectricity for piezoelectric materials
,” in
Piezoelectricity
(
Springer-Verlag
,
Berlin, Berlin, Heidelberg
,
2008
), Vol. 114, pp.
37
87
.
50.
A. Y.
Dantsiger
,
N. V.
Dergunova
,
S. I.
Dudkina
, and
E. G.
Fesenko
, “
Ferroelectric solid solutions with high piezoelectric characteristics
,”
Ferroelectrics
132
,
213
(
1992
).
51.
A. Y.
Dantsiger
,
N. V.
Dergunova
,
S. I.
Dudkina
,
O. N.
Razumovskaya
,
L. A.
Shilkina
, and
V. A.
Servuli
, “
Interdependences among crystallochemical, structural and electrophysical parameters of ferroelectric solid solutions
,”
Ferroelectrics
132
,
207
(
1992
).
52.
E. G.
Fesenko
,
A. Y.
Dantsiger
,
L. A.
Resnitchenko
, and
M. F.
Kupriyanov
, “
Composition-structure-properties dependences in solid solutions on the basis of lead-zirconate-titanate and sodium niobate
,”
Ferroelectrics
41
,
137
(
1982
).
53.
G.
Helke
and
K.
Lubitz
, “
Piezoelectric PZT Ceramics
,” in
Piezoelectricity
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
, 2008), pp.
89
130
.
54.
L.
Jin
,
Broadband Dielectric Response in Hard and Soft PZT Understanding Softening and Hardening Mechanisms
(
EPFL
,
2011
).
55.
A. K.
Tagantsev
,
L. E.
Cross
, and
J.
Fousek
,
Domains in Ferroic Crystals and Thin Films
(
Springer New York
,
New York, NY
,
2010
).
56.
O.
Kersten
and
G.
Schmidt
, “
Dielectric dispersion in PZT ceramics
,”
Ferroelectrics
67
,
191
(
1986
).
57.
G.
Arlt
,
U.
Böttger
, and
S.
Witte
, “
Dielectric dispersion of ferroelectric ceramics and single crystals at microwave frequencies
,”
Ann. Phys.
506
,
578
(
1994
).
58.
M. P.
McNeal
,
S.-J.
Jang
, and
R. E.
Newnham
, “
The effect of grain and particle size on the microwave properties of barium titanate (BaTiO3)
,”
J. Appl. Phys.
83
,
3288
(
1998
).
59.
V.
Porokhonskyy
and
D.
Damjanovic
, “
Domain wall contributions in Pb(Zr,Ti)O3 ceramics at morphotropic phase boundary: A study of dielectric dispersion
,”
Appl. Phys. Lett.
96
,
242902
(
2010
).
60.
Y.-K.
Choi
,
T.
Hoshina
,
H.
Takeda
,
T.
Teranishi
, and
T.
Tsurumi
, “
Effects of oxygen vacancies and grain sizes on the dielectric response of BaTiO3
,”
Appl. Phys. Lett.
97
,
212907
(
2010
).
61.
T.
Hoshina
,
K.
Takizawa
,
J.
Li
,
T.
Kasama
,
H.
Kakemoto
, and
T.
Tsurumi
, “
Domain size effect on dielectric properties of barium titanate ceramics
,”
Jpn. J. Appl. Phys.
47
,
7607
(
2008
).
62.
T.
Hoshina
,
Y.
Kigoshi
,
S.
Hatta
,
T.
Teranishi
,
H.
Takeda
, and
T.
Tsurumi
, “
Size effect and domain-wall contribution of barium titanate ceramics
,”
Ferroelectrics
402
,
29
(
2010
).
63.
D.
Damjanovic
,
N.
Klein
,
J.
Li
, and
V.
Porokhonskyy
, “
What can be expected from lead-free piezoelectric materials?
,”
Funct. Mater. Lett.
03
,
5
(
2010
).
64.
A. V.
Turik
,
M. F.
Kupriyanov
,
E. N.
Sidorenko
, and
S. M.
Zaitsev
, “
Behavior of piezoceramics of type Pb(ZrxTi1-x)O3 near the region of morphotropic transition
,”
Sov. Phys. Tech. Phys.
25
,
1251
(
1980
).
65.
K.
Okazaki
and
K.
Nagata
, “
Effects of grain size and porosity on electrical and optical properties of PLZT ceramics
,”
J. Am. Ceram. Soc.
56
,
82
(
1973
).
66.
Y. A.
Genenko
, “
Space-charge mechanism of aging in ferroelectrics: An analytically solvable two-dimensional model
,”
Phys. Rev. B
78
,
214103
(
2008
).
67.
S.
Lee
,
Z.-K.
Liu
,
M.-H.
Kim
, and
C. A.
Randall
, “
Influence of nonstoichiometry on ferroelectric phase transition in BaTiO3
,”
J. Appl. Phys.
101
,
054119
(
2007
).
68.
H.
Jaffe
,
D.
Berlincourt
, and
J. M.
McKee
, “
Effect of pressure on the Curie temperature of polycrystalline ceramic barium titanate
,”
Phys. Rev.
105
,
57
(
1957
).
69.
W. J.
Merz
, “
The effect of hydrostatic pressure on the curie point of barium titanate single crystals
,”
Phys. Rev.
78
,
52
(
1950
).
70.
F. H.
Schader
,
E.
Aulbach
,
K. G.
Webber
, and
G. A.
Rossetti
, “
Influence of uniaxial stress on the ferroelectric-to-paraelectric phase change in barium titanate
,”
J. Appl. Phys.
113
,
174103
(
2013
).
71.
P. W.
Forsbergh
, “
Effect of a two-dimensional pressure on the Curie point of barium titanate
,”
Phys. Rev.
93
,
686
(
1954
).
72.
J.
Klimowski
, “
Effect of high hydrostatic pressure on the dielectric properties of BaTiO3 single crystals
,”
Phys. Status Solidi
2
,
456
(
1962
).
73.
G. A.
Rossetti
,
L. E.
Cross
, and
K.
Kushida
, “
Stress induced shift of the Curie point in epitaxial PbTiO3 thin films
,”
Appl. Phys. Lett.
59
,
2524
(
1991
).

Supplementary Material

You do not currently have access to this content.