Anisotropic plasma-enhanced atomic layer etching (ALE) requires directional ions with a well-defined ion energy to remove materials in a highly selective and self-limiting fashion. In many plasma etching systems, the ion energy is controlled using radio-frequency (13.56 MHz) sinusoidal waveform biasing. However, this yields ions with a broad energy distribution, while also inducing electron heating mechanisms that can affect the ion flux. In this work, we report on precise ion energy control—independent of the ion flux—using low-frequency (LF: 100 kHz) tailored bias voltage waveforms in a commercial remote plasma reactor. A prototype LF bias generator has been used to apply tailored waveforms consisting of a positive voltage pulse and a negative linear voltage ramp. These waveforms yielded ions having narrow energy distributions (7 ± 1 eV full-width-at-half-maximum) measured on dielectric SiO2 substrates for ion energies up to 200 eV in collisionless Ar plasmas. The mono-energetic ions were used to etch SiO2 thin films by physical sputtering. In these sputter etch experiments, the ability to accurately control the ion energy in the <100 eV range is demonstrated to allow for a more precise determination of sputter thresholds, which serve as valuable input for the design of novel ALE chemistries. The feasibility of performing anisotropic plasma etching using LF tailored waveform biasing was established by etching a SiO2 layer on a 3D trench nanostructure. The potential merits of this technique for the field of atomic scale processing are discussed.

1.
S.
Salahuddin
,
K.
Ni
, and
S.
Datta
,
Nat. Electron.
1
,
442
(
2018
).
2.
R.
Clark
,
K.
Tapily
,
K.
Yu
,
T.
Hakamata
,
S.
Consiglio
,
D.
O’Meara
,
C.
Wajda
,
J.
Smith
, and
G.
Leusink
,
APL Mater.
6
,
058203
(
2018
).
3.
K. J.
Kanarik
,
S.
Tan
, and
R. A.
Gottscho
,
J. Phys. Chem. Lett.
9
,
4814
(
2018
).
4.
T.
Faraz
,
F.
Roozeboom
,
H. C. M.
Knoops
, and
W. M. M.
Kessels
,
ECS J. Solid State Sci. Technol.
4
,
N5023
(
2015
).
5.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
, 2nd ed. (
John Wiley & Sons
,
Hoboken
,
NJ
,
2005
).
6.
K. J.
Kanarik
,
T.
Lill
,
E. A.
Hudson
,
S.
Sriraman
,
S.
Tan
,
J.
Marks
,
V.
Vahedi
, and
R. A.
Gottscho
,
J. Vac. Sci. Technol. A
33
,
020802
(
2015
).
7.
V. M.
Donnelly
and
A.
Kornblit
,
J. Vac. Sci. Technol. A
31
,
050825
(
2013
).
8.
G. S.
Oehrlein
,
D.
Metzler
, and
C.
Li
,
ECS J. Solid State Sci. Technol.
4
,
N5041
(
2015
).
9.
M.
Nastasi
,
J. W.
Mayer
, and
J. K.
Hirvonen
,
Ion-Solid Interaction: Fundamental Applications
(
Cambridge University Press
,
1996
), pp.
88
114
.
10.
I. L.
Berry
,
K. J.
Kanarik
,
T.
Lill
,
S.
Tan
,
V.
Vahedi
, and
R. A.
Gottscho
,
J. Vac. Sci. Technol. A
36
,
01B105
(
2018
).
11.
R.
Behrisch
and
W.
Eckstein
,
Sputtering by Particle Bombardment
(
Springer
,
New York
,
2007
).
12.
K. J.
Kanarik
,
S.
Tan
,
W.
Yang
,
T.
Kim
,
T.
Lill
,
A.
Kabansky
,
E. A.
Hudson
,
T.
Ohba
,
K.
Nojiri
,
J.
Yu
,
R.
Wise
,
I. L.
Berry
,
Y.
Pan
,
J.
Marks
, and
R. A.
Gottscho
,
J. Vac. Sci. Technol. A
35
,
05C302
(
2017
).
13.
X. V.
Qin
,
Y.-H.
Ting
, and
A. E.
Wendt
,
Plasma Sources Sci. Technol.
19
,
065014
(
2010
).
14.
E.
Kawamura
,
V.
Vahedi
,
M. A.
Lieberman
, and
C. K.
Birdsall
,
Plasma Sources Sci. Technol.
8
,
R45
(
1999
).
15.
T.
Faraz
,
K.
Arts
,
S.
Karwal
,
H. C. M.
Knoops
, and
W. M. M.
Kessels
,
Plasma Sources Sci. Technol.
28
,
024002
(
2019
).
16.
M. A.
Sobolewski
and
J. H.
Kim
,
J. Appl. Phys.
102
,
113302
(
2007
).
17.
H. C.
Lee
,
M. H.
Lee
, and
C. W.
Chung
,
Appl. Phys. Lett.
96
,
071501
(
2010
).
18.
H. C.
Lee
and
C. W.
Chung
,
Appl. Phys. Lett.
101
,
244104
(
2012
).
19.
J.
Schulze
,
E.
Schüngel
, and
U.
Czarnetzki
,
Appl. Phys. Lett.
100
,
024102
(
2012
).
20.
S.
Tan
,
W.
Yang
,
K. J.
Kanarik
,
T.
Lill
,
V.
Vahedi
,
J.
Marks
, and
R. A.
Gottscho
,
ECS J. Solid State Sci. Technol.
4
,
N5010
(
2015
).
21.
P.
Kudlacek
,
R. F.
Rumphorst
, and
M. C. M.
Van De Sanden
,
J. Appl. Phys.
106
,
073303
(
2009
).
22.
S.-B.
Wang
and
A. E.
Wendt
,
J. Appl. Phys.
88
,
643
(
2000
).
23.
Z.
Donkó
,
J.
Schulze
,
U.
Czarnetzki
,
A.
Derzsi
,
P.
Hartmann
,
I.
Korolov
, and
E.
Schüngel
,
Plasma Phys. Control. Fusion
54
,
124003
(
2012
).
24.
U.
Czarnetzki
,
J.
Schulze
,
E.
Schüngel
, and
Z.
Donkó
,
Plasma Sources Sci. Technol.
20
,
024010
(
2011
).
25.
D. J.
Economou
,
J. Vac. Sci. Technol. A
31
,
050823
(
2013
).
26.
E.
Langereis
,
S. B. S.
Heil
,
H. C. M.
Knoops
,
W.
Keuning
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Phys. D Appl. Phys.
42
,
073001
(
2009
).
27.
T.
Baloniak
,
R.
Reuter
,
C.
Flötgen
, and
A.
Von Keudell
,
J. Phys. D Appl. Phys.
43
,
055203
(
2010
).
28.
K.
Denieffe
,
C. M. O.
Mahony
,
P. D.
Maguire
,
D.
Gahan
, and
M. B.
Hopkins
,
J. Phys. D Appl. Phys.
44
,
075205
(
2011
).
29.
D.
Gahan
,
B.
Dolinaj
, and
M. B.
Hopkins
,
Plasma Sources Sci. Technol.
17
,
035026
(
2008
).
30.
H.
Viefhaus
,
K.
Hennesen
,
M.
Lucas
,
E. M.
Müller-Lorenz
, and
H. J.
Grabke
,
Surf. Interface Anal.
21
,
665
(
1994
).
31.
D. V.
Lopaev
,
T. V.
Rakhimova
,
A. T.
Rakhimov
,
A. I.
Zotovich
,
S. M.
Zyryanov
, and
M. R.
Baklanov
,
J. Phys. D Appl. Phys.
51
,
02LT02
(
2018
).
32.
T.
Faraz
,
M.
van Drunen
,
H. C. M.
Knoops
,
A.
Mallikarjunan
,
I.
Buchanan
,
D. M.
Hausmann
,
J.
Henri
, and
W. M. M.
Kessels
,
ACS Appl. Mater. Interfaces
9
,
1858
(
2017
).
33.
J. R.
Woodworth
,
I. C.
Abraham
,
M. E.
Riley
,
P. A.
Miller
,
T. W.
Hamilton
,
B. P.
Aragon
,
R. J.
Shul
, and
C. G.
Willison
,
J. Vac. Sci. Technol. A
20
,
873
(
2002
).
34.
T.
Lill
,
K. J.
Kanarik
,
S.
Tan
,
M.
Shen
,
E.
Hudson
,
Y.
Pan
,
J.
Marks
,
V.
Vahedi
, and
R. A.
Gottscho
, in
Encyclopedia of Plasma Technology
, edited by
J. L.
Shohet
(
CRC Press
,
Boca Raton
,
2016
), pp.
133
142
.
35.
M. P.
Seah
and
T. S.
Nunney
,
J. Phys. D Appl. Phys.
43
,
253001
(
2010
).
36.
G. V.
Jorgenson
and
G. K.
Wehner
,
J. Appl. Phys.
36
,
2672
(
1965
).
37.
Y. Y.
Tu
,
T. J.
Chuang
, and
H. F.
Winters
,
Phys. Rev. B
23
,
823
(
1981
).
38.
P. D.
Davidse
and
L. I.
Maissel
,
J. Vac. Sci. Technol.
4
,
33
(
1967
).
39.
H.
Bach
,
J. Non Cryst. Solids
102
,
36
(
1988
).
40.
R. P.
Edwin
,
J. Phys. D Appl. Phys.
6
,
833
(
1973
).
41.
R. A.
Dugdale
and
S. D.
Ford
,
Trans. Br. Ceram. Soc.
65
,
165
(
1966
).
42.
A. R.
Bayly
,
J. Mater. Sci.
7
,
404
(
1972
).
43.
R. L.
Hines
,
J. Appl. Phys.
28
,
587
(
1957
).
44.
45.
M.
Cantagrel
and
M.
Marchal
,
J. Mater. Sci.
8
,
1711
(
1973
).
46.
T.
Nenadović
,
B.
Perraillon
,
Ž
Bogdanov
,
Z.
Djordjević
, and
M.
Milić
,
Nucl. Inst. Methods Phys. Res. B
48
,
538
(
1990
).
47.
K.
Mogi
,
T.
Ogiwara
,
M.
Suzuki
, and
SERD project of SASJ
,
J. Surf. Anal.
9
,
514
(
2002
).
48.
S. S.
Todorov
and
E. R.
Fossum
,
Appl. Phys. Lett.
52
,
365
(
1988
).
49.
M. F.
Doemling
,
B.
Lin
,
N. R.
Rueger
,
G. S.
Oehrlein
,
R. A.
Haring
, and
Y. H.
Lee
,
J. Vac. Sci. Technol. A Vac. Surf. Film.
18
,
232
(
2000
).
50.
H. C. M.
Knoops
,
T.
Faraz
,
K.
Arts
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
37
,
030902
(
2019
).
51.
S. G.
Rosenberg
,
C.
Wagenbach
,
V. R.
Anderson
,
S. D.
Johnson
,
N.
Nepal
,
A. C.
Kozen
,
J. M.
Woodward
,
Z. R.
Robinson
,
M.
Munger
,
H.
Joress
,
K. F.
Ludwig
, and
C. R.
Eddy
,
J. Vac. Sci. Technol. A
37
,
020928
(
2019
).
52.
W.-H.
Kim
,
F. S.
Minaye Hashemi
,
A. J. M.
Mackus
,
J.
Singh
,
Y.
Kim
,
D.
Bobb-Semple
,
Y.
Fan
,
T.
Kaufman-Osborn
,
L.
Godet
, and
S. F.
Bent
,
ACS Nano
10
,
4451
4458
(
2016
).
53.
T.
Faraz
,
H. C. M.
Knoops
,
M. A.
Verheijen
,
C. A. A.
van Helvoirt
,
S.
Karwal
,
A.
Sharma
,
V.
Beladiya
,
A.
Szeghalmi
,
D. M.
Hausmann
,
J.
Henri
,
M.
Creatore
, and
W. M. M.
Kessels
,
ACS Appl. Mater. Interfaces
10
,
13158
(
2018
).
54.
A.
Chaker
,
C.
Vallee
,
V.
Pesce
,
S.
Belahcen
,
R.
Vallat
,
R.
Gassilloud
,
N.
Posseme
,
M.
Bonvalot
, and
A.
Bsiesy
,
Appl. Phys. Lett.
114
,
043101
(
2019
).
55.
H. B.
Profijt
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Vac. Sci. Technol. A
31
,
01A106
(
2013
).
56.
S.
Karwal
,
M. A.
Verheijen
,
B.
Williams
,
T.
Faraz
,
W.
Kessels
, and
M.
Creatore
,
J. Mater. Chem. C
6
,
3917
(
2018
).
57.
V.
Beladiya
,
M.
Becker
,
T.
Faraz
,
W. M. M.
Kessels
,
P.
Schenk
,
F.
Otto
,
T.
Fritz
,
M.
Gruenewald
,
C.
Helbing
,
K. D.
Jandt
,
A.
Tünnermann
,
M.
Sierka
, and
A.
Szeghalmi
,
Nanoscale
12
,
2089
(
2020
).
58.
S.
Karwal
,
M. A.
Verheijen
,
K.
Arts
,
T.
Faraz
,
W. M. M.
Kessels
, and
M.
Creatore
,
Plasma Chem. Plasma Process.
40
,
697
(
2020
).
59.
T.
Faraz
, “
Precise ion energy control with tailored waveform biasing for atomic scale processing
,” 4TU.ResearchData, https://data.4tu.nl/.

Supplementary Material

You do not currently have access to this content.