In this study, we demonstrate that the radiative heat transfer between metallic planar surfaces exceeds the blackbody limit by employing the near-field and thin-film effects over macroscale surfaces. Nanosized polystyrene particles were used to create a nanometer gap between aluminum thin films of different thicknesses from 80 nm to 13 nm coated on 5 × 5 mm2 silicon chips, while the vacuum gap spacing is fitted from the near-field measurement with bare silicon samples. The near-field radiative heat flux between 13-nm-thick Al thin films at 215 nm gap distance is measured to be 6.4 times over the blackbody limit and 420 times to the far-field radiative heat transfer between metallic surfaces under a temperature difference of 65 K with the receiver at room temperature. The experimental results are validated by theoretical calculation based on fluctuational electrodynamics, and the heat enhancement is explained by non-resonant electromagnetic coupling within the subwavelength vacuum gap and resonant coupling inside the nanometric Al thin film with s polarized waves. This work will facilitate the applications of near-field radiation in thermal power conversion, radiative refrigeration, and noncontact heat control where metallic materials are involved.

1.
Z. M.
Zhang
,
Nano/Microscale Heat Transfer
(
McGraw-Hill
,
New York
,
2007
).
2.
S.
Basu
,
Z. M.
Zhang
, and
C. J.
Fu
,
Int. J. Energy Res.
33
,
1203
1232
(
2009
).
3.
S.
Basu
,
Y.-B.
Chen
, and
Z. M.
Zhang
,
Int. J. Energy Res.
31
,
689
716
(
2007
).
4.
J.-Y.
Chang
,
Y.
Yang
, and
L. P.
Wang
,
Int. J. Heat Mass Transfer
87
,
237
247
(
2015
).
5.
Y.
Yang
,
J.-Y.
Chang
,
P.
Sabbaghi
, and
L. P.
Wang
,
J. Heat Transfer
139
,
052701
(
2017
).
6.
J. K.
Tong
,
W.-C.
Hsu
,
Y.
Huang
,
S. V.
Boriskina
, and
G.
Chen
,
Sci. Rep.
5
,
10661
(
2015
).
7.
K.
Park
,
S.
Basu
,
W. P.
King
, and
Z. M.
Zhang
,
J. Quant. Spectrosc. Radiat. Transfer
109
,
305
(
2008
).
8.
H.
Yu
,
D.
Liu
,
Y.
Duan
, and
Z.
Yang
,
J. Quant. Spectrosc. Radiat. Transfer
217
,
235
242
(
2018
).
9.
H.
Daneshvar
,
R.
Prinja
, and
N. P.
Kherani
,
Appl. Energy
159
,
560
575
(
2015
).
10.
O.
Ilic
,
M.
Jablan
,
J. D.
Joannopoulos
,
I.
Celanovic
, and
M.
Soljačić
,
Opt. Express
20
,
A366
A384
(
2012
).
11.
J.
DeSutter
,
M. P.
Bernardi
, and
M.
Francoeur
,
Energy Convers. Manage.
108
,
429
438
(
2016
).
12.
A.
Fiorino
,
L.
Zhu
,
D.
Thompson
,
R.
Mittapally
,
P.
Reddy
, and
E.
Meyhofer
,
Nat. Nanotechnol.
13
,
806
(
2018
).
13.
T.
Inoue
,
T.
Koyama
,
D. D.
Kang
,
K.
Ikeda
,
T.
Asano
, and
S.
Noda
,
Nano Lett.
19
,
3948
3952
(
2019
).
14.
C. R.
Otey
,
W. T.
Lau
, and
S.
Fan
,
Phys. Rev. Lett.
104
,
154301
(
2010
).
15.
H.
Iizuka
and
S.
Fan
,
J. Appl. Phys.
112
,
024304
(
2012
).
16.
Y.
Yang
,
S.
Basu
, and
L. P.
Wang
,
Appl. Phys. Lett.
103
,
163101
(
2013
).
17.
A.
Fiorino
,
D.
Thompson
,
L.
Zhu
,
R.
Mittapally
,
S. A.
Biehs
,
O.
Bezencenet
,
N.
El-Bondry
,
S.
Bansropun
,
P.
Ben-Abdallah
,
E.
Meyhofer
, and
P.
Reddy
,
ACS Nano
12
,
5774
5779
(
2018
).
18.
X. L.
Liu
and
Z. M.
Zhang
,
Nano Energy
26
,
353
359
(
2016
).
19.
K.
Chen
,
P.
Santhanam
,
S.
Sandhu
,
L.
Zhu
, and
S.
Fan
,
Phys. Rev. B
91
,
134301
(
2015
).
20.
X. L.
Liu
,
L. P.
Wang
, and
Z. M.
Zhang
,
Nanoscale Microscale Thermophys. Eng.
19
,
98
126
(
2015
).
21.
K.
Park
and
Z. M.
Zhang
,
Front. Heat Mass Transfer
4
,
013001
(
2013
).
22.
K.
Joulain
,
J.-P.
Mulet
,
F.
Marquier
,
R.
Carminati
, and
J.-J.
Greffet
,
Surf. Sci. Rep.
57
,
59
112
(
2005
).
23.
A. C.
Jones
,
B. T.
O’Callahan
,
H. U.
Yang
, and
M. B.
Raschke
,
Prog. Surf. Sci.
88
,
349
392
(
2013
).
24.
S.
Basu
and
L. P.
Wang
,
Appl. Phys. Lett.
102
,
053101
(
2013
).
25.
S.-A.
Biehs
,
M.
Tschikin
, and
P.
Ben-Abdallah
,
Phys. Rev. Lett.
109
,
104301
(
2012
).
26.
C. L.
Cortes
,
W.
Newman
,
S.
Molesky
, and
Z.
Jacob
,
J. Opt.
14
,
063001
(
2012
).
27.
Y.
Guo
,
W.
Newman
,
C. L.
Cortes
, and
Z.
Jacob
,
Adv. OptoElectron.
2012
,
1
(
2012
).
28.
X. L.
Liu
,
R. Z.
Zhang
, and
Z. M.
Zhang
,
Appl. Phys. Lett.
103
,
213102
(
2013
).
29.
B.
Liu
and
S.
Shen
,
Phys. Rev. B
87
,
115403
(
2013
).
30.
Y.
Yang
and
L. P.
Wang
,
Phys. Rev. Lett.
117
,
044301
(
2016
).
31.
Y.
Yang
,
P.
Sabbaghi
, and
L. P.
Wang
,
Int. J. Heat Mass Transfer
108
,
851
859
(
2017
).
32.
B. J.
Lee
,
L. P.
Wang
, and
Z. M.
Zhang
,
Opt. Express
16
,
11328
11336
(
2008
).
33.
L. P.
Wang
and
Z. M.
Zhang
,
J. Opt. Soc. Am. B
27
,
2595
2604
(
2010
).
34.
L. P.
Wang
and
Z. M.
Zhang
,
Appl. Phys. Lett.
95
,
111904
(
2009
).
35.
L. P.
Wang
and
Z. M.
Zhang
,
Opt. Express
19
,
A126
A135
(
2011
).
36.
M. D.
Doherty
,
A.
Murphy
,
R. J.
Pollard
, and
P.
Dawson
,
Phys. Rev. X
3
,
011001
(
2013
).
37.
J.
Dai
,
F.
Ding
,
S. I.
Bozhevolnyi
, and
M.
Yan
,
Phys. Rev. B
95
,
245405
(
2017
).
38.
B.
Wang
,
C.
Lin
,
K. H.
Teo
, and
Z. M.
Zhang
,
J. Quant. Spectrosc. Radiat. Transfer
196
,
10
16
(
2017
).
39.
A.
Fiorino
,
D.
Thompson
,
L.
Zhu
,
B.
Song
,
P.
Reddy
, and
E.
Meyhofer
,
Nano Lett.
18
,
3711
3715
(
2018
).
40.
B.
Song
,
D.
Thompson
,
A.
Fiorino
,
Y.
Ganjeh
,
P.
Reddy
, and
E.
Meyhofer
,
Nat. Nanotechnol.
11
,
509
(
2016
).
41.
K.
Kim
,
B.
Song
,
V.
Fernández-Hurtado
,
W.
Lee
,
W.
Jeong
,
L.
Cui
,
D.
Thompson
,
J.
Feist
,
M. T. H.
Reid
,
F. J.
García-Vidal
,
J. C.
Cuevas
,
E.
Meyhofer
, and
P.
Reddy
,
Nature
528
,
387
(
2015
).
42.
R.
St-Gelais
,
L.
Zhu
,
S.
Fan
, and
M.
Lipson
,
Nat. Nanotechnol.
11
,
515
(
2016
).
43.
A.
Narayanaswamy
,
S.
Shen
, and
G.
Chen
,
Phys. Rev. B
78
,
115303
(
2008
).
44.
S.
Shen
,
A.
Narayanaswamy
, and
G.
Chen
,
Nano Lett.
9
,
2909
2913
(
2009
).
45.
R.
Ottens
,
V.
Quetschke
,
S.
Wise
,
A.
Alemi
,
R.
Lundock
,
G.
Mueller
,
D. H.
Reitze
,
D. B.
Tanner
, and
B. F.
Whiting
,
Phys. Rev. Lett.
107
,
014301
(
2011
).
46.
T.
Ijiro
and
N.
Yamada
,
Appl. Phys. Lett.
106
,
023103
(
2015
).
47.
S.
Lang
,
G.
Sharma
,
S.
Molesky
,
P. U.
Kränzien
,
T.
Jalas
,
Z.
Jacob
,
A. Y.
Petrov
, and
M.
Eich
,
Sci. Rep.
7
,
13916
(
2017
).
48.
J.
Yang
,
W.
Du
,
Y.
Su
,
Y.
Fu
,
S.
Gong
,
S.
He
, and
Y.
Ma
,
Nat. Commun.
9
,
4033
(
2018
).
49.
L.
Hu
,
A.
Narayanaswamy
,
X.
Chen
, and
G.
Chen
,
Appl. Phys. Lett.
92
,
133106
(
2008
).
50.
K.
Ito
,
A.
Miura
,
H.
Iizuka
, and
H.
Toshiyoshi
,
Appl. Phys. Lett.
106
,
083504
(
2015
).
51.
K.
Ito
,
K.
Nishikawa
,
A.
Miura
,
H.
Toshiyoshi
, and
H.
Iizuka
,
Nano Lett.
17
,
4347
(
2017
).
52.
M.
Ghashami
,
H.
Geng
,
T.
Kim
,
N.
Iacopino
,
S. K.
Cho
, and
K.
Park
,
Phys. Rev. Lett.
120
,
175901
(
2018
).
53.
J.
Shi
,
P.
Li
,
B.
Liu
, and
S.
Shen
,
Appl. Phys. Lett.
102
,
183114
(
2013
).
54.
M.
Lim
,
S. S.
Lee
, and
B. J.
Lee
,
Phys. Rev. B
91
,
195136
(
2015
).
55.
J. I.
Watjen
,
B.
Zhao
, and
Z. M.
Zhang
,
Appl. Phys. Lett.
109
,
203112
(
2016
).
56.
M. P.
Bernardi
,
D.
Milovich
, and
M.
Francoeur
,
Nat. Commun.
7
,
12900
(
2016
).
57.
X.
Ying
,
P.
Sabbaghi
,
N.
Sluder
, and
L. P.
Wang
,
ACS Photonics
7
,
190
(
2019
).
58.
J.
DeSutter
,
L.
Tang
, and
M.
Francoeur
,
Nat. Nanotechnol.
14
,
751
(
2019
).
59.
S.
Boriskina
,
J.
Tong
,
Y.
Huang
,
J.
Zhou
,
V.
Chiloyan
, and
G.
Chen
,
Photonics
2
,
659
(
2015
).
60.
S.
Shen
,
A.
Mavrokefalos
,
P.
Sambegoro
, and
G.
Chen
,
Appl. Phys. Lett.
100
,
233114
(
2012
).
61.
T.
Kralik
,
P.
Hanzelka
,
M.
Zobac
,
V.
Musilova
,
T.
Fort
, and
M.
Horak
,
Phys. Rev. Lett.
109
,
224302
(
2012
).
62.
M.
Lim
,
J.
Song
,
S. S.
Lee
, and
B. J.
Lee
,
Nat. Commun.
9
,
4302
(
2018
).
63.
E. D.
Palik
,
Handbook of Optical Constants of Solids
(
Academic Press
,
New York
,
1998
).

Supplementary Material

You do not currently have access to this content.