We report the lateral and vertical electrical conduction properties of PdCrO2 thin films grown on insulating Al2O3 (001) and conducting β-Ga2O3(2¯01) substrates. The c-axis oriented PdCrO2 films on the both substrates showed metallic temperature dependence of in-plane resistivity down to 2 K. In PdCrO2/β-Ga2O3 vertical devices, rectifying current density–voltage (JV) characteristics revealed the formation of a Schottky barrier at the PdCrO2/β-Ga2O3 interface. The Schottky barrier height (SBH) of 1.2–1.8 eV, evaluated by J–V characteristics, is significantly larger than 0.8 eV expected from the usual Mott–Schottky relation based on the electron affinity of β-Ga2O3 (4.0 eV) and the work function of PdCrO2 (4.8 eV) determined by ultraviolet photoelectron spectroscopy. The enhanced SBH at the PdCrO2/β-Ga2O3 interface indicates the existence of interface dipoles, as in the case of PdCoO2/β-Ga2O3. Besides, we observed a large difference of the SBH between the J–V measurements (1.2–1.8 eV) and capacitance measurements (2.0–2.1 eV). While the SBH is definitely enhanced by the interface dipole effect, the level of enhancement at the PdCrO2/β-Ga2O3 interface is rather inhomogeneous, different from that at the PdCoO2/β-Ga2O3. In fact, two typical types of interfaces were found by a high-angle annular dark-field scanning transmission electron microscope, which would be the origin of the inhomogeneous SBH. Further understanding of the interface formation between delafossite oxides and β-Ga2O3(2¯01) will improve the performance of Ga2O3 Schottky junctions as a power diode available at high temperatures.

1.
R. D.
Shannon
,
D. B.
Rogers
, and
C. T.
Prewitt
,
Inorg. Chem.
10
,
713
718
(
1971
).
2.
A. P.
Mackenzie
,
Rep. Prog. Phys.
80
,
032501
(
2017
).
3.
R.
Daou
,
R.
Frésard
,
V.
Eyert
,
S.
Hébert
, and
A.
Maignan
,
Sci. Technol. Adv. Mater.
18
,
919
938
(
2017
).
4.
P.
Kushwaha
,
H.
Borrmann
,
S.
Khim
,
H.
Rosner
,
P. J. W.
Moll
,
D. A.
Sokolov
,
V.
Sunko
,
Y.
Grin
, and
A. P.
Mackenzie
,
Cryst. Growth Des.
17
,
4144
4150
(
2017
).
5.
T.
Harada
,
S.
Ito
, and
A.
Tsukazaki
,
Sci. Adv.
5
,
eaax5733
(
2019
).
6.
P. F.
Carcia
,
R. D.
Shannon
,
P. E.
Bierstedt
, and
R. B.
Flippen
,
J. Electrochem. Soc.
127
,
1974
1978
(
1980
).
7.
T.
Harada
,
K.
Fujiwara
, and
A.
Tsukazaki
,
APL Mater.
6
,
046107
(
2018
).
8.
P.
Yordanov
,
W.
Sigle
,
P.
Kaya
,
M. E.
Gruner
,
R.
Pentcheva
,
B.
Keimer
, and
H.-U.
Habermeier
,
Phys. Rev. Mater.
3
,
085403
(
2019
).
9.
T.
Harada
,
K.
Sugawara
,
K.
Fujiwara
,
M.
Kitamura
,
S.
Ito
,
T.
Nojima
,
K.
Horiba
,
H.
Kumigashira
,
T.
Takahashi
,
T.
Sato
, and
A.
Tsukazaki
,
Phys. Rev. Res.
2
,
013282
(
2020
).
10.
J. M.
Ok
,
M.
Brahlek
,
W. S.
Choi
,
K. M.
Roccapriore
,
M. F.
Chisholm
,
S.
Kim
,
C.
Sohn
,
E.
Skoropata
,
S.
Yoon
,
J. S.
Kim
, and
H. N.
Lee
,
APL Mater.
8
,
051104
(
2020
).
11.
M.
Brahlek
,
G.
Rimal
,
J. M.
Ok
,
D.
Mukherjee
,
A. R.
Mazza
,
Q.
Lu
,
H. N.
Lee
,
T. Z.
Ward
,
R. R.
Unocic
,
G.
Eres
, and
S.
Oh
,
Phys. Rev. Mater.
3
,
093401
(
2019
).
12.
J.
Sun
,
M. R.
Barone
,
C. S.
Chang
,
M. E.
Holtz
,
H.
Paik
,
J.
Schubert
,
D. A.
Muller
, and
D. G.
Schlom
,
APL Mater.
7
,
121112
(
2019
).
13.
M.
Mekata
,
T.
Sugino
,
A.
Oohara
,
Y.
Oohara
, and
H.
Yoshizawa
,
Physica B
213–214
,
221
223
(
1995
).
14.
H.
Takatsu
,
H.
Yoshizawa
,
S.
Yonezawa
, and
Y.
Maeno
,
Phys. Rev. B
79
,
104424
(
2009
).
15.
H.
Takatsu
,
S.
Yonezawa
,
S.
Fujimoto
, and
Y.
Maeno
,
Phys. Rev. Lett.
105
,
137201
(
2010
).
16.
H.
Takatsu
,
G.
Nénert
,
H.
Kadowaki
,
H.
Yoshizawa
,
M.
Enderle
,
S.
Yonezawa
,
Y.
Maeno
,
J.
Kim
,
N.
Tsuji
,
M.
Takata
,
Y.
Zhao
,
M.
Green
, and
C.
Broholm
,
Phys. Rev. B
89
,
104408
(
2014
).
17.
J. M.
Ok
,
Y. J.
Jo
,
K.
Kim
,
T.
Shishidou
,
E. S.
Choi
,
H.-J.
Noh
,
T.
Oguchi
,
B. I.
Min
, and
J. S.
Kim
,
Phys. Rev. Lett.
111
,
176405
(
2013
).
18.
C. W.
Hicks
,
A. S.
Gibbs
,
L.
Zhao
,
P.
Kushwaha
,
H.
Borrmann
,
A. P.
Mackenzie
,
H.
Takatsu
,
S.
Yonezawa
,
Y.
Maeno
, and
E. A.
Yelland
,
Phys. Rev. B
92
,
014425
(
2015
).
19.
D.
Billington
,
D.
Ernsting
,
T. E.
Millichamp
,
C.
Lester
,
S. B.
Dugdale
,
D.
Kersh
,
J. A.
Duffy
,
S. R.
Giblin
,
J. W.
Taylor
,
P.
Manuel
,
D. D.
Khalyavin
, and
H.
Takatsu
,
Sci. Rep.
5
,
12428
(
2015
).
20.
H.
Takatsu
,
S.
Yonezawa
,
S.
Mouri
,
S.
Nakatsuji
,
K.
Tanaka
, and
Y.
Maeno
,
J. Phys. Soc. Jpn.
76
,
104701
(
2007
).
21.
T.
Harada
and
A.
Tsukazaki
,
APL Mater.
8
,
041109
(
2020
).
22.
T.
Harada
and
A.
Tsukazaki
,
AIP Adv.
7
,
085011
(
2017
).
23.
T.
Harada
and
A.
Tsukazaki
,
Proc. SPIE
10533
,
105330X
(
2018
).
24.
H.
Takatsu
and
Y.
Maeno
,
J. Cryst. Growth
312
,
3461
3465
(
2010
).
25.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
Wiley
,
Hoboken
,
2006
).
26.
H.
He
,
R.
Orlando
,
M. A.
Blanco
,
R.
Pandey
,
E.
Amzallag
,
I.
Baraille
, and
M.
Rérat
,
Phys. Rev. B
74
,
195123
(
2006
).
27.
J. P.
Sullivan
,
R. T.
Tung
,
M. R.
Pinto
, and
W. R.
Graham
,
J. Appl. Phys.
70
,
7403
7424
(
1991
).
28.
J. H.
Werner
and
H. H.
Güttler
,
J. Appl. Phys.
69
,
1522
1533
(
1991
).
29.
L. F.
Wagner
,
R. W.
Young
, and
A.
Sugerman
,
IEEE Electron Device Lett.
4
,
320
322
(
1983
).
30.
H.
Hoeneisen
,
C. A.
Mead
, and
M. A.
Nicolet
,
Solid State Electron.
14
,
1057
1059
(
1971
).
31.
S. J.
Pearton
,
J.
Yang
,
P. H.
Cary IV
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
,
Appl. Phys. Rev.
5
,
011301
(
2018
).
32.
R. T.
Tung
,
Appl. Phys. Rev.
1
,
011304
(
2014
).
33.
M.
Mohamed
,
K.
Irmscher
,
C.
Janowitz
,
Z.
Galazka
,
R.
Manzke
, and
R.
Fornari
,
Appl. Phys. Lett.
101
,
132106
(
2012
).
You do not currently have access to this content.