One-dimensional carbon nanomaterials such as carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) are promising for future applications in nanoelectronics and nanophotonics due to their unique characteristics such as topological edge states, chirality, and quantum confinement. Despite the chemical unzipping method of producing GNRs from CNTs, using energetic photons to control light–matter interaction and shape materials at the nanoscale has great promise, especially for chemical-free and on-demand manufacturing. Here, we exploit the high electromagnetic field from a Ti:Sapphire femtosecond laser to interact with CNTs, causing ultrafast energy transfer between the photons and the nanotubes and converting them to GNRs and carbon nanocrystals. Probed with scattering-type scanning near-field optical microscopy, the nanoribbons are identified as semiconducting and/or insulating, a strikingly different electronic phase compared with the original metallic CNTs. Our method of employing high-field and nonequilibrium processes with an ultrafast laser to alter the shape and transform the electronic properties is scalable, does not necessitate high-temperature processes, and is highly spatially controllable—conditions that pave the way for manufacturing nanoscale hybrid materials and devices.

1.
A. J.
Pinkerton
, “
Lasers in additive manufacturing
,”
Opt. Laser Technol.
78
,
25
32
(
2016
).
2.
Q.
Cao
and
J. A.
Rogers
, “
Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects
,”
Adv. Mater.
21
,
29
53
(
2009
).
3.
A. H.
Brozena
,
M.
Kim
,
L. R.
Powell
, and
Y.
Wang
, “
Controlling the optical properties of carbon nanotubes with organic colour-centre quantum defects
,”
Nat. Rev. Chem.
3
,
375
(
2019
).
4.
J. W. G.
Wilder
,
L. C.
Venema
,
A. G.
Rinzler
,
R. E.
Smalley
, and
C.
Dekker
, “
Electronic structure of atomically resolved carbon nanotubes
,”
Nature
391
,
59
(
1998
).
5.
H.
Kataura
 et al., “
Optical properties of single-wall carbon nanotubes
,”
Synth. Met.
103
,
2555
2558
(
1999
).
6.
B. I.
Yakobson
and
P.
Avouris
, “
Mechanical properties of carbon nanotubes
,” in
Carbon Nanotubes
(
Springer
,
2001
).
7.
P.
Kim
,
L.
Shi
,
A.
Majumdar
, and
P. L.
McEuen
, “
Thermal transport measurements of individual multiwalled nanotubes
,”
Phys. Rev. Lett.
87
,
215502
(
2001
).
8.
J. L.
Bahr
and
J. M.
Tour
, “
Covalent chemistry of single-wall carbon nanotubes
,”
J. Mater. Chem.
12
,
1952
1958
(
2002
).
9.
S.
Ravindran
,
S.
Chaudhary
,
B.
Colburn
,
M.
Ozkan
, and
C. S.
Ozkan
, “
Covalent coupling of quantum dots to multiwalled carbon nanotubes for electronic device applications
,”
Nano Lett.
3
,
447
453
(
2003
).
10.
S.
Bandow
 et al., “
Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes
,”
Phys. Rev. Lett.
80
,
3779
(
1998
).
11.
M. S.
Strano
, “
Probing chiral selective reactions using a revised Kataura plot for the interpretation of single-walled carbon nanotube spectroscopy
,”
J. Am. Chem. Soc.
125
,
16148
16153
(
2003
).
12.
M. S.
Dresselhaus
,
G.
Dresselhaus
, and
R.
Saito
, “
Physics of carbon nanotubes
,”
Carbon
33
,
883
891
(
1995
).
13.
I.
Cabria
,
J. W.
Mintmire
, and
C. T.
White
, “
Metallic and semiconducting narrow carbon nanotubes
,”
Phys. Rev. B
67
,
121406
(
2003
).
14.
R.
Krupke
,
F.
Hennrich
,
L.
Hv
, and
M. M.
Kappes
, “
Separation of metallic from semiconducting single-walled carbon nanotubes
,”
Science
301
,
344
347
(
2003
).
15.
S.
Ghosh
,
S. M.
Bachilo
, and
R. B.
Weisman
, “
Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation
,”
Nat. Nanotechnol.
5
,
443
(
2010
).
16.
R. C.
Haddon
,
J.
Sippel
,
A. G.
Rinzler
, and
F.
Papadimitrakopoulos
, “
Purification and separation of carbon nanotubes
,”
MRS Bull.
29
,
252
259
(
2004
).
17.
Z.
Chen
,
Y.-M.
Lin
,
M. J.
Rooks
, and
P.
Avouris
, “
Graphene nano-ribbon electronics
,”
Physica E
40
,
228
232
(
2007
).
18.
X.
Wang
,
Y.
Ouyang
,
X.
Li
,
H.
Wang
,
J.
Guo
, and
H.
Dai
, “
Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors
,”
Phys. Rev. Lett.
100
,
206803
(
2008
).
19.
V.
Barone
,
O.
Hod
, and
G. E.
Scuseria
, “
Electronic structure and stability of semiconducting graphene nanoribbons
,”
Nano Lett.
6
,
2748
2754
(
2006
).
20.
D. J.
Rizzo
 et al., “
Topological band engineering of graphene nanoribbons
,”
Nature
560
,
204
(
2018
).
21.
A.
Kimouche
 et al., “
Ultra-narrow metallic armchair graphene nanoribbons
,”
Nat. Commun.
6
,
10177
(
2015
).
22.
Z.-S.
Wu
,
W.
Ren
,
L.
Gao
,
B.
Liu
,
J.
Zhao
, and
H.-M.
Cheng
, “
Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets
,”
Nano Res.
3
,
16
22
(
2010
).
23.
D. V.
Kosynkin
 et al., “
Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons
,”
Nature
458
,
872
(
2009
).
24.
G.
Zhang
 et al., “
Selective etching of metallic carbon nanotubes by gas-phase reaction
,”
Science
314
,
974
977
(
2006
).
25.
L.
Jiao
,
L.
Zhang
,
X.
Wang
,
G.
Diankov
, and
H.
Dai
, “
Narrow graphene nanoribbons from carbon nanotubes
,”
Nature
458
,
877
(
2009
).
26.
D. B.
Shinde
,
J.
Debgupta
,
A.
Kushwaha
,
M.
Aslam
, and
V. K.
Pillai
, “
Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons
,”
J. Am. Chem. Soc.
133
,
4168
4171
(
2011
).
27.
S.
Ozden
 et al., “
Unzipping carbon nanotubes at high impact
,”
Nano Lett.
14
,
4131
4137
(
2014
).
28.
P.
Kumar
,
L. S.
Panchakarla
, and
C. N. R.
Rao
, “
Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons
,”
Nanoscale
3
,
2127
2129
(
2011
).
29.
C.
Han
 et al., “
Morphology-directing transformation of carbon nanotubes under the irradiation of pulsed laser with different pulsed duration
,”
Opt. Laser Technol.
109
,
27
32
(
2019
).
30.
J.
Cai
,
C. Y.
Wang
,
T.
Yu
, and
S.
Yu
, “
Wall thickness of single-walled carbon nanotubes and its Young’s modulus
,”
Phys. Scr.
79
,
025702
(
2009
).
31.
A. H. R.
Palser
, “
Interlayer interactions in graphite and carbon nanotubes
,”
Phys. Chem. Chem. Phys.
1
,
4459
4464
(
1999
).
32.
J. H.
Lehman
,
M.
Terrones
,
E.
Mansfield
,
K. E.
Hurst
, and
V.
Meunier
, “
Evaluating the characteristics of multiwall carbon nanotubes
,”
Carbon
49
,
2581
2602
(
2011
).
33.
P.
Delhaes
,
M.
Couzi
,
M.
Trinquecoste
,
J.
Dentzer
,
H.
Hamidou
, and
C.
Vix-Guterl
, “
A comparison between Raman spectroscopy and surface characterizations of multiwall carbon nanotubes
,”
Carbon
44
,
3005
3013
(
2006
).
34.
D.
Bischoff
,
J.
Güttinger
,
S.
Dröscher
,
T.
Ihn
,
K.
Ensslin
, and
C.
Stampfer
, “
Raman spectroscopy on etched graphene nanoribbons
,”
J. Appl. Phys.
109
,
073710
(
2011
).
35.
R. D.
Rodriguez
,
B.
Ma
, and
E.
Sheremet
, “
Raman spectroscopy investigation of laser-irradiated single-walled carbon nanotube films
,”
Phys. Status Solidi B
256
,
1800412
(
2019
).
36.
L. M.
Malard
,
M. A.
Pimenta
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
, “
Raman spectroscopy in graphene
,”
Phys. Rep.
473
,
51
87
(
2009
).
37.
A. C.
Ferrari
, “
Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects
,”
Solid State Commun.
143
,
47
57
(
2007
).
38.
W.
Ren
 et al., “
Edge phonon state of mono-and few-layer graphene nanoribbons observed by surface and interference co-enhanced Raman spectroscopy
,”
Phys. Rev. B
81
,
035412
(
2010
).
39.
L. T.
Sun
,
J. L.
Gong
,
D. Z.
Zhu
,
Z. Y.
Zhu
, and
S. X.
He
, “
Diamond nanorods from carbon nanotubes
,”
Adv. Mater.
16
,
1849
1853
(
2004
).
40.
B.
Wei
,
J.
Zhang
,
J.
Liang
, and
D.
Wu
, “
The mechanism of phase transformation from carbon nanotube to diamond
,”
Carbon
36
,
997
1001
(
1998
).
41.
J.
Xiao
,
G.
Ouyang
,
P.
Liu
,
C. X.
Wang
, and
G. W.
Yang
, “
Reversible nanodiamond-carbon onion phase transformations
,”
Nano Lett.
14
,
3645
3652
(
2014
).
42.
X.
Chen
 et al., “
Modern scattering-type scanning near-field optical microscopy for advanced material research
,”
Adv. Mater.
31
,
1804774
(
2019
).
43.
Z.
Fei
 et al., “
Infrared nanoscopy of Dirac plasmons at the graphene–SiO2 interface
,”
Nano Lett.
11
,
4701
4705
(
2011
).
44.
F.
Hu
 et al., “
Imaging the localized plasmon resonance modes in graphene nanoribbons
,”
Nano Lett.
17
,
5423
5428
(
2017
).
45.
Q.
Lu
 et al., “
Determination of carbon nanotube density by gradient sedimentation
,”
J. Phys. Chem. B
110
,
24371
24376
(
2006
).
46.
N. R.
Pradhan
,
H.
Duan
,
J.
Liang
, and
G. S.
Iannacchione
, “
The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes
,”
Nanotechnology
20
,
245705
(
2009
).
47.
I. H.
Malitson
, “
Interspecimen comparison of the refractive index of fused silica
,”
J. Opt. Soc. Am.
55
,
1205
1209
(
1965
).
48.
W.
Bao
 et al., “
Controlled ripple texturing of suspended graphene and ultrathin graphite membranes
,”
Nat. Nanotechnol.
4
,
562
(
2009
).
49.
R.
Paschotta
,
Encyclopedia of Laser Physics and Technology
(
Wiley Online Library
,
2008
).
50.
L.
Xiao
 et al., “
A polarized infrared thermal detector made from super-aligned multiwalled carbon nanotube films
,”
Nanotechnology
22
,
025502
(
2011
).
51.
F.
De Nicola
 et al., “
Controlling the thickness of carbon nanotube random network films by the estimation of the absorption coefficient
,”
Carbon
95
,
28
33
(
2015
).
52.
E.
Pop
,
D.
Mann
,
Q.
Wang
,
K.
Goodson
, and
H.
Dai
, “
Thermal conductance of an individual single-wall carbon nanotube above room temperature
,”
Nano Lett.
6
,
96
100
(
2006
).
53.
G. E.
Begtrup
,
K. G.
Ray
,
B. M.
Kessler
,
T. D.
Yuzvinsky
,
H.
Garcia
, and
A.
Zettl
, “
Extreme thermal stability of carbon nanotubes
,”
Phys. Status Solidi B
244
,
3960
3963
(
2007
).
54.
K.
Zhang
,
G. M.
Stocks
, and
J.
Zhong
, “
Melting and premelting of carbon nanotubes
,”
Nanotechnology
18
,
285703
(
2007
).
55.
M. Y.
Han
,
B.
Ozyilmaz
,
Y.
Zhang
, and
P.
Kim
, “
Energy band-gap engineering of graphene nanoribbons
,”
Phys. Rev. Lett.
98
,
206805
(
2007
).
56.
A. I.
Chernov
,
P. V.
Fedotov
,
A. V.
Talyzin
,
I. S.
Lopez
,
I. V.
Anoshkin
,
A. G.
Nasibulin
,
E. I.
Kauppinen
, and
E. D.
Obraztsova
, “
Optical properties of graphene nanoribbons encapsulated in single-walled carbon nanotubes
,”
ACS Nano
7
,
6346
6353
(
2013
).

Supplementary Material

You do not currently have access to this content.