Discharge current components, such as electron, ion beam, and lost-to-wall currents, are obtained as functions of azimuthal propellant inhomogeneity in a Hall thruster. Discharge characteristics are discussed based on discharge current oscillation and radial–azimuthal discharge photography. A highly oscillative operation regime is found to be accompanied by radially enlarged expansion of discharge under limited electron currents. Further increases in neutral inhomogeneity lead to quiescent discharge combined with enhanced electron currents and an azimuthally separated ionization region. An axial one-dimensional classical view of electron flow is found to explain the observed electron current evolution only until moderate propellant inhomogeneity occurs. Through discharge image analysis, it is shown that plasma inhomogeneity increases linearly with respect to the input neutral particle inhomogeneity. The evolution of the inhomogeneity does not capture a stepwise increase in the electron current during discharge mode changes; however, the monotonic increase featured in each discharge regime shows that the azimuthal gradient of plasma properties can contribute to increased electron current. Lastly, the weakened magnetic barrier to electron flow resulting from axial–azimuthal variation in plasma structures is presented as another possible cause of increased electron current in nonuniform propellant operations.

1.
D. M.
Goebel
and
I.
Katz
,
Fundamentals of Electric Propulsion: Ion and Hall Thrusters
(
JPL
,
Caltec
,
2008
).
2.
E. Y.
Choueiri
, “
Fundamental difference between the two Hall thruster variants
,”
Phys. Plasmas
8
,
5025
5033
(
2001
).
3.
Y.
Raitses
and
N. J.
Fisch
, “
Parametric investigations of a nonconventional Hall thruster
,”
Phys. Plasmas
8
,
2579
2586
(
2001
).
4.
S.
Mazouffre
,
S.
Tsikata
, and
J.
Vaudolon
, “
Development and experimental characterization of a wall-less Hall thruster
,”
J. Appl. Phys.
116
,
243302
(
2014
).
5.
B.
Karadag
,
S.
Cho
, and
I.
Funaki
, “
Thrust performance, propellant ionization, and thruster erosion of an external discharge plasma thruster
,”
J. Appl. Phys.
123
,
153302
(
2018
).
6.
N.
Yamamoto
,
K.
Komurasaki
, and
Y.
Arakawa
, “
Discharge current oscillation in Hall thrusters
,”
J. Propul. Power
21
,
870
876
(
2005
).
7.
T.
Tamida
,
T.
Nakagawa
,
I.
Suga
,
H.
Osuga
,
T.
Ozaki
, and
K.
Matsui
, “
Determining parameter sets for low-frequency-oscillation-free operation of Hall thruster
,”
J. Appl. Phys.
102
,
043304
(
2007
).
8.
B. M.
Reid
, Ph.D. thesis, University of Michigan, 2009.
9.
M. J.
Sekerak
,
B. W.
Longmier
,
A. D.
Gallimore
,
D. L.
Brown
,
R. R.
Hofer
, and
J. E.
Polk
, “
Azimuthal spoke propagation in Hall effect thrusters
,”
IEEE Trans. Plasma Sci.
43
,
72
85
(
2015
).
10.
R. R.
Hofer
, Ph.D. thesis, University of Michigan, 2004.
11.
B.
Reid
and
A.
Gallimore
, “Review of Hall thruster neutral flow dynamics,” in 30th International Electric Propulsion Conference, IEPC-2007-038 (Electric Rocket Propulsion Society, 2007), pp. 1–14.
12.
Y.
Fukushima
,
S.
Yokota
,
D.
Takahashi
,
K.
Hara
,
S.
Cho
,
K.
Komurasaki
, and
Y.
Arakawa
, “Discharge stabilization method of an anode layer type Hall thruster by non-uniform propellant flow,” in 31st International Electric Propulsion Conference, IEPC-2009-148 (Electric Rocket Propulsion Society, 2009).
13.
V.
Baranov
,
Y.
Nazarenko
, and
V.
Petrosov
, “Azimuthal non-uniformities in accelerators with closed electron drift,” in 27th International Electric Propulsion Conference, IEPC-01-018 (Electric Rocket Propulsion Society, 2001).
14.
J.
Bak
,
R.
Kawashima
,
K.
Komurasaki
, and
H.
Koizumi
, “
Plasma formation and cross-field electron transport induced by azimuthal neutral inhomogeneity in an anode layer Hall thruster
,”
Phys. Plasmas
26
,
073505
(
2019
).
15.
D. L.
Brown
,
M. L. R.
Walker
,
J.
Szabo
,
W.
Huang
, and
J. E.
Foster
, “
Recommended practice for use of faraday probes in electric propulsion testing
,”
J. Propul. Power
33
,
582
613
(
2016
).
16.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
, 2nd ed. (
Wiley
,
NJ
,
2005
), pp.
165
206
.
17.
H.
Oechsner
, “
Electron yields from clean polycrystalline metal surfaces by noble-gas-ion bombardment at energies around 1 keV
,”
Phys. Rev. B
17
,
1052
1056
(
1978
).
18.
P. A.
Anderson
, “
The work function of copper
,”
Phys. Rev.
76
,
388
390
(
1949
).
19.
N.
Yamamoto
,
S.
Yokota
,
K.
Watanabe
,
A.
Sasoh
,
K.
Komurasaki
, and
Y.
Arakawa
, “
Suppression of discharge current oscillations in a Hall thruster
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
48
,
169
174
(
2005
).
20.
J. B.
Parker
,
Y.
Raitses
, and
N. J.
Fisch
, “
Transition in electron transport in a cylindrical Hall thruster
,”
Appl. Phys. Lett.
97
,
091501
(
2010
).
21.
M. S.
McDonald
and
A. D.
Gallimore
, “
Rotating spoke instabilities in Hall thrusters
,”
IEEE Trans. Plasma Sci.
39
,
2952
2953
(
2011
).
22.
C. L.
Ellison
,
Y.
Raitses
, and
N. J.
Fisch
, “
Cross-field electron transport induced by a rotating spoke in a cylindrical Hall thruster
,”
Phys. Plasmas
19
,
013503
(
2012
).
23.
B. A.
Jorns
and
R. R.
Hofer
, “
Plasma oscillations in a 6-kW magnetically shielded Hall thruster
,”
Phys. Plasmas
21
,
053512
(
2014
).
24.
L.
Wei
,
W.
Li
,
Y.
Ding
, and
D.
Yu
, “
Effect of low-frequency oscillation on performance of Hall thrusters
,”
Plasma Sci. Technol.
20
,
075502
(
2018
).
25.
I.
Romadanov
,
Y.
Raitses
, and
A.
Smolyakov
, “
Hall thruster operation with externally driven breathing mode oscillations
,”
Plasma Sources Sci. Technol.
27
,
094006
(
2018
).
26.
L.
Wei
,
C.
Wang
,
K.
Han
, and
D.
Yu
, “
Effect of ionization distribution on the low frequency oscillations mode in Hall thrusters
,”
Phys. Plasmas
19
,
012107
(
2012
).
27.
K.
Hara
,
M. J.
Sekerak
,
I. D.
Boyd
, and
A. D.
Gallimore
, “
Mode transition of a Hall thruster discharge plasma
,”
J. Appl. Phys.
115
,
203304
(
2014
).
28.
G. S.
Janes
and
R. S.
Lowder
, “
Anomalous electron diffusion and ion acceleration in a low-density plasma
,”
Phys. Fluids
9
,
1115
1123
(
1966
).
29.
T.
Lafleur
,
S. D.
Baalrud
, and
P.
Chabert
, “
Theory for the anomalous electron transport in Hall effect thrusters. I. Insights from particle-in-cell simulations
,”
Phys. Plasmas
23
,
053502
(
2016
).
30.
V.
Croes
,
T.
Lafleur
,
Z.
Bonaventura
,
A.
Bourdon
, and
P.
Chabert
, “
2D particle-in-cell simulations of the electron drift instability and associated anomalous electron transport in Hall-effect thrusters
,”
Plasma Sources Sci. Technol.
26
,
034001
(
2017
).
31.
S.
Janhunen
,
A.
Smolyakov
,
O.
Chapurin
,
D.
Sydorenko
,
I.
Kaganovich
, and
Y.
Raitses
, “
Nonlinear structures and anomalous transport in partially magnetized EB plasmas
,”
Phys. Plasmas
25
,
011608
(
2018
), arXiv:1705.00749.
32.
Y.
Sakawa
,
C.
Joshi
,
P. K.
Kaw
,
F. F.
Chen
, and
V. K.
Jain
, “
Excitation of the modified Simon–Hoh instability in an electron beam produced plasma
,”
Phys. Fluids B
5
,
1681
1694
(
1993
).
33.
W.
Frias
,
A. I.
Smolyakov
,
I. D.
Kaganovich
, and
Y.
Raitses
, “
Long wavelength gradient drift instability in Hall plasma devices. I. Fluid theory
,”
Phys. Plasmas
19
,
072112
(
2012
).
You do not currently have access to this content.