Dilute nitrides lattice-matched to GaP were studied to explore the possibilities to improve their properties by additional indium or arsenic content in the GaPN alloy for further utilization in solar cells. Admittance spectroscopy shows that intrinsic layers of GaPNAs and InP/GaPN grown by molecular-beam epitaxy have unintentional background silicon donor doping. Deep-level transient spectroscopy allowed us to reveal several defect levels. In GaPNAs, two defect levels were detected at Ec0.58 eV and Ev+ 0.44 eV, with respective concentrations of 4 × 1015 cm−3 and 2 × 1015 cm−3. After thermal annealing, these could be reduced by a factor of two and by more than one order of magnitude, respectively, leading to an increase of external quantum efficiency and open-circuit voltage of solar cells. The InP/GaPN layer exhibits a defect level at Ec0.44 eV (with a concentration of 2 × 1014 cm−3), which is of similar nature as the one at Ec0.58 eV in GaPNAs. Furthermore, unlike in GaPNAs, defect levels close to midgap were also detected in the InP/GaPN layer. These non-radiative recombination centers lead to poorer photoelectric properties of solar cells based on InP/GaPN as compared to those based on GaPNAs. Therefore, the introduction of arsenic in the compound and post-growth thermal annealing allowed us to reduce the defect concentrations in dilute nitrides and improve photoelectrical properties for photovoltaic applications.

1.
F.
Dimroth
,
T. N. D.
Tibbits
,
M.
Niemeyer
,
F.
Predan
,
P.
Beutel
,
C.
Karcher
,
E.
Oliva
,
G.
Siefer
,
D.
Lackner
,
P.
Fus-Kailuweit
,
A. W.
Bett
,
R.
Krause
,
C.
Drazek
,
E.
Guiot
,
J.
Wasselin
,
A.
Tauzin
, and
T.
Signamarcheix
,
IEEE J. Photovoltaics
6
,
343
(
2016
).
2.
F.
Meillaud
,
A.
Shah
,
C.
Droz
,
E.
Vallat-Sauvain
and
C.
Miazza
,
Sol. Energy Mater. Sol. Cells
90
,
2952
(
2006
).
3.
S.
Adachi
,
Properties of Group-IV, III-V and II-VI Semiconductors
(
John Wiley & Sons, Ltd
,
Chichester
,
2005
).
4.
C.
Skierbiszewski
,
P.
Perlin
,
P.
Wisniewski
,
W.
Knap
,
T.
Suski
,
W.
Walukiewicz
,
W.
Shan
,
K. M.
Yu
,
J. W.
Ager
,
E. E.
Haller
,
J. F.
Geisz
, and
J. M.
Olson
,
Appl. Phys. Lett.
76
,
2409
(
2000
).
5.
I. A.
Buyanova
,
G. Yu.
Rudko
,
W. M.
Chen
,
H. P.
Xin
, and
C. W.
Tu
,
Appl. Phys. Lett.
80
,
1740
(
2002
).
6.
J. F.
Geisz
and
D. J.
Friedman
,
Semicond. Sci. Technol.
17
,
769
(
2002
).
7.
D. A.
Kudryashov
,
A. S.
Gudovskikh
,
E. V.
Nikitina
, and
A. Yu.
Egorov
,
Semiconductors
48
,
381
(
2014
).
8.
J. F.
Geisz
,
D. J.
Friedman
, and
S.
Kurtz
, in
Twenty-Ninth IEEE Photovoltaic Specialists Conference 2002
(
IEEE
,
2002
), pp.
864
867
.
9.
J. F.
Geisz
,
J. M.
Olson
,
D. J.
Friedman
,
K. M.
Jones
,
R. C.
Reedy
, and
M. J.
Romero
, in
Proceedings of the 31st IEEE PVSC
(
IEEE
,
2005
), pp.
695
698
.
10.
S.
Sukrittanon
,
R.
Liu
,
Y. G.
Ro
,
J. L.
Pan
,
K. L.
Jungjohann
,
C. W.
Tu
, and
S. A.
Dayeh
,
Appl. Phys. Lett.
107
,
153901
(
2015
).
11.
S.
Almosni
,
P.
Rale
,
C.
Cornet
,
M.
Perrin
,
L.
Lombez
,
A.
Létoublon
,
K.
Tavernier
,
C.
Levallois
,
T.
Rohel
,
N.
Bertru
,
J. F.
Guillemoles
, and
O.
Durand
,
Sol. Energy Mater. Sol. Cells
147
,
53
(
2016
).
12.
K.
Yamane
,
M.
Goto
,
K.
Takahashi
,
K.
Sato
,
H.
Sekiguchi
,
H.
Okada
, and
A.
Wakahara
,
Appl. Phys. Express
10
,
075504
(
2017
).
13.
A. A.
Lazarenko
,
E. V.
Nikitina
,
E. V.
Pirogov
,
M. S.
Sobolev
, and
A. Yu.
Egorov
,
Semiconductors
48
,
392
(
2014
).
14.
A. A.
Lazarenko
,
E. V.
Nikitina
,
M. S.
Sobolev
,
E. V.
Pirogov
,
D. V.
Denisov
, and
A. Yu.
Egorov
,
Semiconductors
49
,
479
(
2015
).
15.
S.
Almosni
,
C.
Robert
,
T.
Nguyen Thanh
,
C.
Cornet
,
A.
Létoublon
,
T.
Quinci
,
C.
Levallois
,
M.
Perrin
,
J.
Kuyyalil
,
L.
Pedesseau
,
A.
Balocchi
,
P.
Barate
,
J.
Even
,
J. M.
Jancu
,
N.
Bertru
,
X.
Marie
,
O.
Durand
, and
A.
Le Corre
,
J. Appl. Phys.
113
,
123509
(
2013
).
16.
N. Q.
Thinh
,
I. P.
Vorona
,
I. A.
Buyanova
,
W. M.
Chen
,
S.
Limpijumnong
,
S. B.
Zhang
,
Y. G.
Hong
,
H. P.
Xin
,
C. W.
Tu
,
A.
Utsumi
,
Y.
Furukawa
,
S.
Moon
,
A.
Wakahara
, and
H.
Yonezu
,
Phys. Rev. B
71
,
125209
(
2005
).
17.
D.
Dagnelund
,
I. A.
Buyanova
,
X. J.
Wang
,
W. M.
Chen
,
A.
Utsumi
,
Y.
Furukawa
,
A.
Wakahara
, and
H.
Yonezu
,
J. Appl. Phys.
103
,
063519
(
2008
).
18.
D.
Dagnelund
,
J.
Stehr
,
A. Y.
Egorov
,
W. M.
Chen
, and
I. A.
Buyanova
,
Appl. Phys. Lett.
102
,
021910
(
2013
).
19.
B.
Tell
and
F. P. J.
Kuijpers
,
J. Appl. Phys.
49
,
5938
(
1978
).
20.
G.
Ferenczi
,
P.
Krispin
, and
M.
Somogyi
,
J. Appl. Phys.
54
,
3902
(
1983
).
21.
P.
Kamiński
,
W.
Strupiński
, and
K.
Roszkiewicz
,
J. Cryst. Growth
108
,
699
(
1991
).
22.
A. V.
Skazochkin
,
Y. K.
Krutogolov
, and
Y. I.
Kunakin
,
Semicond. Sci. Technol.
10
,
634
(
1995
).
23.
A. V.
Skazochkin
,
Y. K.
Krutogolov
, and
G. G.
Bondarenko
,
Semicond. Sci. Technol.
11
,
495
(
1996
).
24.
K.
Z˘dánský
,
J.
Zavadil
,
D.
Nohavica
, and
S.
Kugler
,
J. Appl. Phys.
83
,
7678
(
1998
).
25.
A. F.
Basile
,
S.
Hatakenaka
,
H.
Okada
, and
A.
Wakahara
,
J. Vac. Sci. Technol. A
27
,
531
(
2009
).
26.
D.
Dagnelund
,
C. W.
Tu
,
A.
Polimeni
,
M.
Capizzi
,
W. M.
Chen
, and
I. A.
Buyanova
,
Phys. Status Solidi C
10
,
561
(
2013
).
27.
A. I.
Baranov
,
A. S.
Gudovskikh
,
K. S.
Zelentsov
,
E. V.
Nikitina
, and
A. Yu.
Egorov
,
Semiconductors
49
,
524
(
2015
).
28.
O. I.
Rumyantsev
,
P. N.
Brunkov
,
E. V.
Pirogov
, and
A. Yu.
Egorov
,
Semiconductors
44
,
893
(
2010
).
29.
A. I.
Baranov
,
J. P.
Kleider
,
A. S.
Gudovskikh
,
A.
Darga
,
E. V.
Nikitina
, and
A. Yu.
Egorov
,
J. Phys. Conf. Ser.
741
,
012077
(
2016
).
30.
A. I.
Baranov
,
A. S.
Gudovskikh
,
E. V.
Nikitina
, and
A. Yu.
Egorov
,
Tech. Phys. Lett.
39
,
1117
(
2013
).
31.
N.
Miyashita
,
N.
Ahsan
, and
Y.
Okada
,
Prog. Photovoltaics Res. Appl.
24
,
28
(
2016
).
32.
M.
Sato
and
Y.
Horikoshi
,
J. Appl. Phys.
66
,
851
(
1989
).
33.
R.
Cingolani
,
O.
Brandt
,
L.
Tapfer
,
G.
Scamarcio
,
G. C.
La Rocca
, and
K.
Ploog
,
Phys. Rev. B
42
,
3209
(
1990
).
34.
A. Y.
Egorov
,
A. E.
Zhukov
,
P. S.
Kop’ev
,
N. N.
Ledentsov
,
M. V.
Maksimov
, and
V. M.
Ustinov
,
Fiz. Tekh. Poluprovodn.
28
,
604
(
1994
). [Semiconductors 28,
363
(
1994
)].
35.
A. I.
Baranov
,
A. S.
Gudovskikh
,
D. A.
Kudryashov
,
A. A.
Lazarenko
,
I. A.
Morozov
,
A. M.
Mozharov
,
E. V.
Nikitina
,
E. V.
Pirogov
,
M. S.
Sobolev
,
K. S.
Zelentsov
,
A. Yu.
Egorov
,
A.
Darga
,
S.
Le Gall
, and
J.-P.
Kleider
,
J. Appl. Phys.
123
,
161418
(
2018
).
36.
D. A.
Kudryashov
,
A. S.
Gudovskikh
, and
A. I.
Baranov
,
Semiconductors
52
,
1775
(
2018
).
37.
A. I.
Baranov
,
A. S.
Gudovskikh
,
D. A.
Kudryashov
,
I. A.
Morozov
,
A. M.
Mozharov
, and
K. S.
Zelentsov
,
J. Phys. Conf. Ser.
1124
,
041034
(
2018
).
38.
D. L.
Losee
,
J. Appl. Phys.
46
,
2204
(
1975
).
39.
D. V.
Lang
,
J. Appl. Phys.
45
,
3023
(
1974
).
40.
W. G. J. H. M.
Van Sark
,
L.
Korte
, and
F.
Roca
,
Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells
(
Springer
,
Berlin
,
2012
).
41.
R.
Varache
,
C.
Leendertz
,
M. E.
Gueunier-Farret
,
J.
Haschke
,
D.
Muñoz
, and
L.
Korte
,
Sol. Energy Mater. Sol. Cells
141
,
14
(
2015
).
42.
Y.
Zohta
and
M. O.
Watanabe
,
J. Appl. Phys.
53
,
1809
(
1982
).
43.
M.
Matyas
, Jr.
,
Phys. Status Solidi A
97
,
297
(
1986
).
44.
J.
Dabrowski
and
M.
Schemer
,
Phys. Rev. B
40
,
10391
(
1989
).
45.
S. W.
Johnston
,
R.
Ahenkiel
,
A.
Ptak
,
D.
Friedman
, and
S.
Kurtz
, in National Center for Photovoltaics and Solar Program Review Meeting, Denver, CO, 24–26 March 2003 (NREL, 2003), p. NREL/CP-520-33557 1.
46.
W.
Schröter
,
J.
Kronewitz
,
U.
Gnauert
,
F.
Riedel
, and
M.
Seibt
,
Phys. Rev. B
52
,
13726
(
1995
).
47.
D.
Pons
,
J. Appl. Phys.
55
,
3644
(
1984
).
48.
E.
PŁaczek-Popko
,
J.
Trzmiel
,
E.
Zielony
,
S.
Grzanka
,
R.
Czernecki
, and
T.
Suski
,
Physica B
404
,
4889
(
2009
).
49.
T.
Wosiński
,
J. Appl. Phys.
65
,
1566
(
1989
).
50.
P.
Omling
,
L.
Samuelson
, and
H. G.
Grimmeiss
,
J. Appl. Phys.
54
,
5117
(
1983
).
You do not currently have access to this content.