Intrinsic and extrinsic pinning and passivation of m-plane cleavage facets of GaN n-p-n junctions were investigated by cross-sectional scanning tunneling microscopy and spectroscopy. On freshly cleaved and clean p-type GaN(101¯0) surfaces, the Fermi level is found to be extrinsically pinned by defect states, whereas n-type surfaces are intrinsically pinned by the empty surface state. For both types of doping, air exposure reduces the density of pinning states and shifts the pinning levels toward the band edges. These effects are assigned to water adsorption and dissociation, passivating intrinsic and extrinsic gap states. The revealed delicate interplay of intrinsic and extrinsic surface states at GaN(101¯0) surfaces is a critical factor for realizing flatband conditions at sidewall facets of nanowires exhibiting complex doping structures.

1.
H.
Morkoç
,
S.
Strite
,
G. B.
Gao
,
M. E.
Lin
,
B.
Sverdlov
, and
M.
Burns
, “
Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies
,”
J. Appl. Phys.
76
,
1363
1398
(
1994
).
2.
F. A.
Ponce
and
D. P.
Bour
, “
Nitride-based semiconductors for blue and green light-emitting devices
,”
Nature
386
,
351
359
(
1997
).
3.
D.
Zhu
,
D. J.
Wallis
, and
C. J.
Humphreys
, “
Prospects of III-nitride optoelectronics grown on Si
,”
Rep. Prog. Phys.
76
,
106501
(
2013
).
4.
M.
Kneissl
,
T.-Y.
Seong
,
J.
Han
, and
H.
Amano
, “
The emergence and prospects of deep-ultraviolet light-emitting diode technologies
,”
Nat. Photonics
13
,
1749
4893
(
2019
).
5.
B.
Baur
,
G.
Steinhoff
,
J.
Hernando
,
O.
Purrucker
,
M.
Tanaka
,
B.
Nickel
,
M.
Stutzmann
, and
M.
Eickhoff
, “
Chemical functionalization of GaN and AlN surfaces
,”
Appl. Phys. Lett.
87
,
263901
(
2005
).
6.
W.
Guo
,
M.
Zhang
,
A.
Banerjee
, and
P.
Bhattacharya
, “
Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy
,”
Nano Lett.
10
,
3355
3359
(
2010
).
7.
Y.-J.
Lu
,
C.-Y.
Wang
,
J.
Kim
,
H.-Y.
Chen
,
M.-Y.
Lu
,
Y.-C.
Chen
,
W.-H.
Chang
,
L.-J.
Chen
,
M. I.
Stockman
,
C.-K.
Shih
, and
S.
Gwo
, “
All-color plasmonic nanolasers with ultralow thresholds: Autotuning mechanism for single-mode lasing
,”
Nano Lett.
14
,
4381
4388
(
2014
).
8.
S.
Albert
,
A.
Bengoechea-Encabo
,
X.
Kong
,
M. A.
Sanchez-Garcia
,
E.
Calleja
, and
A.
Trampert
, “
Monolithic integration of InGaN segments emitting in the blue, green, and red spectral range in single ordered nanocolumns
,”
Appl. Phys. Lett.
102
,
181103
(
2013
).
9.
L.
Lymperakis
,
P. H.
Weidlich
,
H.
Eisele
,
M.
Schnedler
,
J.-P.
Nys
,
B.
Grandidier
,
D.
Stievenard
,
R. E.
Dunin-Borkowski
,
J.
Neugebauer
, and
Ph.
Ebert
, “
Hidden surface states at non-polar GaN (101¯0) facets: Intrinsic pinning of nanowires
,”
Appl. Phys. Lett.
103
,
152101
(
2013
).
10.
V.
Portz
,
M.
Schnedler
,
H.
Eisele
,
R. E.
Dunin-Borkowski
, and
Ph.
Ebert
, “
Electron affinity and surface states of GaN m-plane facets: Implication for electronic self-passivation
,”
Phys. Rev. B
97
,
115433
(
2018
).
11.
Y.
Wang
,
M.
Schnedler
,
Q.
Lan
,
F.
Zheng
,
L.
Freter
,
U.
Breuer
,
H.
Eisele
,
J.-F.
Carlin
,
R.
Butté
,
N.
Grandjean
,
R. E.
Dunin-Borkowski
, and
Ph.
Ebert
, “Interplay of anomalous strain relaxation and minimization of polarization changes at nitride semiconductor heterointerfaces,” Phys. Rev. B (to be published) (2020).
12.
M.
Schnedler
,
V.
Portz
,
H.
Eisele
,
R. E.
Dunin-Borkowski
, and
Ph.
Ebert
, “
Polarity-dependent pinning of a surface state
,”
Phys. Rev. B
91
,
205309
(
2015
).
13.
M.
Himmerlich
,
A.
Eisenhardt
,
S.
Shokhovets
,
S.
Krischok
,
J.
Räthel
,
Ph.
Speiser
,
M. D.
Neumann
,
A.
Navarro-Quezada
, and
N.
Esser
, “
Confirmation of intrinsic electron gap states at nonpolar GaN(11¯00) surfaces combining photoelectron and surface optical spectroscopy
,”
Appl. Phys. Lett.
104
,
171602
(
2014
).
14.
C. G.
Van de Walle
and
D.
Segev
, “
Microscopic origins of surface states on nitride surfaces
,”
J. Appl. Phys.
101
,
081704
(
2007
).
15.
M.
Landmann
,
E.
Rauls
,
W. G.
Schmidt
,
M. D.
Neumann
,
E.
Speiser
, and
N.
Esser
, “
GaN m-plane: Atomic structure, surface bands, and optical response
,”
Phys. Rev. B
91
,
035302
(
2015
).
16.
Ph.
Ebert
,
L.
Ivanova
, and
H.
Eisele
, “
Scanning tunneling microscopy on unpinned GaN(11¯00) surfaces: Invisibility of valence-band states
,”
Phys. Rev. B
80
,
085316
(
2009
).
17.
J. G.
Simmons
, “
Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film
,”
J. Appl. Phys.
34
,
1793
1803
(
1963
).
18.
R. M.
Feenstra
and
J. A.
Stroscio
, “
Tunneling spectroscopy of the GaAs(110) surface
,”
J. Vac. Sci. Technol. B
5
,
923
929
(
1987
).
19.
P.
Quadbeck
,
Ph.
Ebert
,
K.
Urban
,
J.
Gebauer
, and
R.
Krause-Rehberg
, “
Effect of dopant atoms on the roughness of III-V semiconductor cleavage surfaces
,”
Appl. Phys. Lett.
76
,
300
(
2000
).
20.
A.
Lenz
, “Atomic structure of capped In(Ga)As and GaAs quantum dots for optoelectronic devices,” Ph.D. thesis (Technische Universität Berlin, 2008).
21.
S.
Gaan
,
R.
Feenstra
,
Ph.
Ebert
,
R.
Dunin-Borkowski
,
J.
Walker
, and
E.
Towe
, “
Structure and electronic spectroscopy of steps on GaAs(110) surfaces
,”
Surf. Sci.
606
,
28
33
(
2012
).
22.
L. T.
Romano
,
C. G. V.
de Walle
,
J. W.
Ager III
,
W.
Götz
, and
R. S.
Kern
, “
Effect of si doping on strain, cracking, and microstructure in GaN thin films grown by metalorganic chemical vapor deposition
,”
J. Appl. Phys.
87
,
7745
7752
(
2000
).
23.
Q.
Yan
,
A.
Janotti
,
M.
Scheffler
, and
C. G.
Van de Walle
, “
Role of nitrogen vacancies in the luminescence of mg-doped gan
,”
Appl. Phys. Lett.
100
,
142110
(
2012
).
24.
S.
Limpijumnong
and
C. G.
Van de Walle
, “
Diffusivity of native defects in GaN
,”
Phys. Rev. B
69
,
035207
(
2004
).
25.
A.
Kyrtsos
,
M.
Matsubara
, and
E.
Bellotti
, “
Migration mechanisms and diffusion barriers of carbon and native point defects in GaN
,”
Phys. Rev. B
93
,
245201
(
2016
).
26.
J. L.
Lyons
and
C. G. V.
de Walle
, “
Computationally predicted energies and properties of defects in GaN
,”
npj Comput. Mater.
3
,
12
(
2017
).
27.
N.
Jäger
,
M.
Marso
,
M.
Salmeron
,
E. R.
Weber
,
K.
Urban
, and
Ph.
Ebert
, “
Physics of imaging pn junctions by scanning tunneling microscopy and spectroscopy
,”
Phys. Rev. B
67
,
165307
(
2003
).
28.
R. M.
Feenstra
,
A.
Vaterlaus
,
E. T.
Yu
,
P. D.
Kirchner
,
C. L.
Lin
,
J. M.
Woodall
, and
G. D.
Pettit
, “Atomic scale analysis of semiconductor interfaces,” in Semiconductor Interfaces at the Sub-Nanometer Scale (Springer, Dordrecht, 1993), pp. 127–137.
29.
A. R.
Smith
,
S.
Gwo
,
K.
Sadra
,
Y. C.
Shih
,
B. G.
Streetman
, and
C. K.
Shih
, “
Comparative study of cross-sectional scanning tunneling microscopy/spectroscopy on III–V hetero- and homostructures: Ultrahigh vacuum-cleaved versus sulfide passivated
,”
J. Vac. Sci. Technol. B
12
,
2610
2615
(
1994
).
30.
S. D.
Wolter
, “
Kinetic study of the oxidation of gallium nitride in dry air
,”
J. Electrochem. Soc.
145
,
629
(
1998
).
31.
I.
Rousseau
,
G.
Callsen
,
G.
Jacopin
,
J.-F.
Carlin
,
R.
Butté
, and
N.
Grandjean
, “
Optical absorption and oxygen passivation of surface states in III-nitride photonic devices
,”
J. Appl. Phys.
123
,
113103
(
2018
).
32.
V. M.
Bermudez
and
J. P.
Long
, “
Chemisorption of H2O on GaN(0001)
,”
Surf. Sci.
450
,
98
105
(
2000
).
33.
P.
Lorenz
, “Oberflächen- und Grenzflächeneigenschaften von polaren galliumnitrid-schichten,” Ph.D. thesis (Technische Universität Ilmenau, Fakultät für Mathematik und Naturwissenschaften, 2011).
34.
N.
Kharche
,
M. S.
Hybertsen
, and
J. T.
Muckerman
, “
Computational investigation of structural and electronic properties of aqueous interfaces of GaN, ZnO, and a GaN/ZnO alloy
,”
Phys. Chem. Chem. Phys.
16
,
12057
12066
(
2014
).
35.
X.
Shen
,
P. B.
Allen
,
M. S.
Hybertsen
, and
J. T.
Muckerman
, “
Water adsorption on the GaN (101¯0) nonpolar surface
,”
J. Phys. Chem. C
113
,
3365
3368
(
2009
).
36.
J.
Wang
,
L. S.
Pedroza
,
A.
Poissier
, and
M. V.
Fernández-Serra
, “
Water dissociation at the GaN(101¯0) surface: Structure, dynamics and surface acidity
,”
J. Phys. Chem. C
116
,
14382
14389
(
2012
).
37.
S.-Y.
Wu
,
L.-W.
Lang
,
P.-Y.
Cai
,
Y.-W.
Chen
,
Y.-L.
Lai
,
M.-W.
Lin
,
Y.-J.
Hsu
,
W.-I.
Lee
,
J.-L.
Kuo
,
M.-F.
Luo
, and
C.-C.
Kuo
, “
Microscopic evidence for the dissociation of water molecules on cleaved GaN(11¯00)
,”
Phys. Chem. Chem. Phys.
20
,
1261
1266
(
2018
).
38.
A. C.
Meng
,
J.
Cheng
, and
M.
Sprik
, “
Density functional theory calculation of the band alignment of (101¯0) InxGa1xN/Water interfaces
,”
J. Phys. Chem. B
120
,
1928
1939
(
2016
).
39.
L.
Lymperakis
,
J.
Neugebauer
,
M.
Himmerlich
,
S.
Krischok
,
M.
Rink
,
J.
Kröger
, and
V. M.
Polyakov
, “
Adsorption and desorption of hydrogen at nonpolar GaN(11¯00) surfaces: Kinetics and impact on surface vibrational and electronic properties
,”
Phys. Rev. B
95
,
195314
(
2017
).
40.
P.
Lorenz
,
R.
Gutt
,
T.
Haensel
,
M.
Himmerlich
,
J. A.
Schaefer
, and
S.
Krischok
, “
Interaction of GaN(0001)-2×2 surfaces with H2O
,”
Phys. Status Solidi C
7
,
169
172
(
2010
).
41.
X.
Zhang
and
S.
Ptasinska
, “
Electronic and chemical structure of the H2O/GaN(0001) interface under ambient conditions
,”
Sci. Rep.
6
,
24848
(
2016
).
42.
M.
Ptasinska
,
J.
Piechota
, and
S.
Krukowski
, “
Adsorption of hydrogen at the GaN(0001¯) surface: An ab initio study
,”
J. Phys. Chem. C
119
,
11563
11569
(
2015
).
43.
L.
Janicki
,
J.
Misiewicz
,
G.
Cywiński
,
M.
Sawicka
,
C.
Skierbiszewski
, and
R.
Kudrawiec
, “
Surface potential barrier in m-plane GaN studied by contactless electroreflectance
,”
Appl. Phys. Express
9
,
021002
(
2016
).
44.
H.
Wang
,
H.
Zhang
,
J.
Liu
,
D.
Xue
,
H.
Liang
, and
X.
Xia
, “
Hydroxyl group adsorption on GaN (0001) surface: First principles and XPS studies
,”
J. Electron. Mater.
48
,
2430
2437
(
2019
).
45.
M.
Sato
,
Y.
Imazeki
,
T.
Takeda
,
M.
Kobayashi
,
S.
Yamamoto
,
I.
Matsuda
,
J.
Yoshinobu
,
Y.
Nakano
, and
M.
Sugiyama
, “
Atomistic-level description of GaN/water interface by a combined spectroscopic and first-principles computational approach
,”
J. Phys. Chem. C
124
,
12466
12475
(
2020
).
46.
D.
Franke
,
A.
Luisa da Rosa
,
M.
Lorke
, and
T.
Frauenheim
, “
Electronic and optical properties of functionalized GaN-(101¯0) surfaces using hybrid-density functionals
,”
Phys. Status Solidi B
256
,
1800455
(
2019
).
You do not currently have access to this content.