Vanadium dioxide (VO2) is one of the best candidates for thermochromic smart windows, which undergoes a metal–insulator transition at a critical temperature (Tc) of ∼68 °C, accompanied with a huge transmittance contrast in the near-infrared range. However, the application of VO2-based smart windows is limited by the poor luminous transmittance (Tlum) and low solar modulation efficiency (ΔTsol). Besides, the intrinsic yellow–brown color of the VO2 film does not change before and after the phase transition, which is not satisfactory. In order to solve the above-mentioned issues, a photochromic material [6-nitro-1′,3′,3′-trimethylspiro-[2H-1-benzopyran-2,2′-indoline] (spiropyran)] has been employed to combine with VO2 nanoparticles to form a hybrid composite film. This newly designed nanostructure demonstrates exemplary solar modulation efficiency (ΔTsol = 23.58%) along with color change from yellow to pink as the light sources change. Moreover, this hybrid composite could block ultraviolet radiation, a crucial index to evaluate the performance of the VO2-based smart windows, which will be promising for industrial applications.

1.
M.
Liu
,
B.
Su
,
Y.
Tang
,
X.
Jiang
, and
A.
Yu
,
Adv. Energy Mater.
7
,
1700885
(
2017
).
2.
S.
Wang
,
W.
Gao
,
X. Y.
Hu
,
Y. Z.
Shen
, and
L.
Wang
,
Chem. Commun.
55
,
4137
(
2019
).
3.
D. M.
Kammen
and
D. A.
Sunter
,
Science
352
,
922
(
2016
).
4.
M.
Zhou
,
J.
Bao
,
M.
Tao
,
R.
Zhu
,
Y.
Lin
,
X.
Zhang
, and
Y.
Xie
,
Chem. Commun.
49
,
6021
(
2013
).
5.
M.
Tarantini
,
A. D.
Loprieno
, and
P. L.
Porta
,
Energy
36
,
2473
(
2011
).
6.
R.
Baetens
,
B. P.
Jelle
, and
A.
Gustavsen
,
Sol. Energy Mater. Sol. Cells
94
,
87
(
2010
).
7.
M.
Li
,
T.
Gould
,
Z.
Su
,
S.
Li
,
F.
Pan
, and
S.
Zhang
,
Appl. Phys. Lett.
115
,
073902
(
2019
).
8.
J.
Zhu
,
A.
Huang
,
H.
Ma
,
Y.
Chen
,
S.
Zhang
,
S.
Ji
,
S.
Bao
, and
P.
Jin
,
New J. Chem.
41
,
830
(
2017
).
9.
J.
Zhu
,
A.
Huang
,
H.
Ma
,
Y.
Ma
,
K.
Tong
,
S.
Ji
,
S.
Bao
,
X.
Cao
, and
P.
Jin
,
ACS Appl. Mater. Interfaces
8
,
29742
(
2016
).
10.
Y.
Chen
,
J.
Zhu
,
H.
Ma
,
L.
Chen
,
R.
Li
, and
P.
Jin
,
Sol. Energy Mater. Sol. Cells
196
,
124
(
2019
).
11.
12.
Y.
Cheng
,
X.
Zhang
,
C.
Fang
,
J.
Chen
,
J.
Su
,
Z.
Wang
,
G.
Sun
, and
D.
Liu
,
Ceram. Int.
44
,
20084
(
2018
).
13.
K.
Liu
,
S.
Lee
,
S.
Yang
,
O.
Delaire
, and
J.
Wu
,
Mater. Today
21
,
875
(
2018
).
14.
L.
Zhang
,
J.
Yao
,
Y.
Guo
,
F.
Xia
,
Y.
Cui
,
B.
Liu
, and
Y.
Gao
,
Ceram. Int.
44
,
19301
(
2018
).
15.
Q.
Hao
,
W.
Li
,
H.
Xu
,
J.
Wang
,
Y.
Yin
,
H.
Wang
,
L.
Ma
,
F.
Ma
,
X.
Jiang
, and
O. G.
Schmidt
,
Adv. Mater.
30
,
1705421
(
2018
).
16.
T. D.
Manning
,
I. P.
Parkin
,
M. E.
Pemble
,
D.
Sheel
, and
D.
Vernardou
,
Chem. Mater.
16
,
744
(
2004
).
17.
M.
Wang
,
J.
Tian
,
H.
Zhang
,
X.
Shi
,
Z.
Chen
,
Y.
Wang
,
A.
Ji
, and
Y.
Gao
,
RSC Adv.
6
,
108286
(
2016
).
18.
Y.
Gao
,
S.
Wang
,
H.
Luo
,
L.
Dai
,
C.
Cao
,
Y.
Liu
,
Z.
Chen
, and
M.
Kanehira
,
Energy Environ. Sci.
5
,
6104
(
2012
).
19.
Y.
Chen
,
X.
Zeng
,
J.
Zhu
,
R.
Li
,
H.
Yao
,
X.
Cao
,
S.
Ji
, and
P.
Jin
,
ACS Appl. Mater. Interfaces
9
,
27784
(
2017
).
20.
G.
Sun
,
H.
Zhou
,
X.
Cao
,
R.
Li
,
M.
Tazawa
,
M.
Okada
, and
P.
Jin
,
ACS Appl. Mater. Interfaces
8
,
7054
(
2016
).
21.
Y.
Li
,
S.
Ji
,
Y.
Gao
,
H.
Luo
, and
M.
Kanehira
,
Sci. Rep.
3
,
1370
(
2013
).
22.
L.
Dai
,
S.
Chen
,
J.
Liu
,
Y.
Gao
,
J.
Zhou
,
Z.
Chen
,
C.
Cao
,
H.
Luo
, and
M.
Kanehira
,
Phys. Chem. Chem. Phys.
15
,
11723
(
2013
).
23.
J.
Zhou
,
Y.
Gao
,
X.
Liu
,
Z.
Chen
,
L.
Dai
,
C.
Cao
,
H.
Luo
,
M.
Kanahira
,
C.
Sun
, and
L.
Yan
,
Phys. Chem. Chem. Phys.
15
,
7505
(
2013
).
24.
C.
Ji
,
Z.
Wu
,
L.
Lu
,
X.
Wu
,
J.
Wang
,
X.
Liu
,
H.
Zhou
,
Z.
Huang
,
J.
Gou
, and
Y.
Jiang
,
J. Mater. Chem. C
6
,
6502
(
2018
).
25.
X.
Cao
,
N.
Wang
,
S.
Magdassi
,
D.
Mandler
, and
Y.
Long
,
Sci. Adv. Mater.
6
,
558
(
2014
).
26.
J. T.
Zhu
,
A. B.
Huang
,
H. B.
Ma
,
S. H.
Bao
,
S. D.
Ji
, and
P.
Jin
,
RSC Adv.
6
,
67396
(
2016
).
27.
N.
Li
,
X.
Cao
,
T.
Chang
,
S.
Long
, and
P.
Jin
,
Nanotechnology
30
,
255703
(
2019
).
28.
Z.
Su
,
J.
Liu
,
M.
Li
,
Y.
Zhu
,
S.
Qian
,
M.
Weng
,
J.
Zheng
,
Y.
Zhong
,
F.
Pan
, and
S.
Zhang
,
Electrochem. Energy Rev.
3
,
286
(
2020
).
29.
Y.
Wang
,
M.
Zu
,
X.
Zhou
,
H.
Lin
,
F.
Peng
, and
S.
Zhang
,
Chem. Eng. J.
381
,
122605
(
2020
).
30.
Z.
Shao
,
X.
Cao
,
Q.
Zhang
,
S.
Long
,
T.
Chang
,
X.
Fang
,
Y.
Yang
, and
P.
Jin
,
Sol. Energy Mater. Sol. Cells
200
,
110044
(
2019
).
31.
D.
Guo
,
C.
Ling
,
C.
Wang
,
D.
Wang
,
J.
Li
,
Z.
Zhao
,
Z.
Wang
,
Y.
Zhao
,
J.
Zhang
, and
H.
Jin
,
ACS Appl. Mater. Interfaces
10
,
28627
(
2018
).
32.
C. J.
Roxburgh
,
P. G.
Sammes
, and
A.
Abdullah
,
Dyes Pigm.
90
,
146
(
2011
).
33.
J.
Zhu
,
Y.
Zhou
,
B.
Wang
,
J.
Zheng
,
S.
Ji
,
H.
Yao
,
H.
Luo
, and
P.
Jin
,
ACS Appl. Mater. Interfaces
7
,
27796
(
2015
).
34.
Y.
Chen
,
Z.
Shao
,
Y.
Yang
,
S.
Zhao
,
Y.
Tao
,
H.
Yao
,
H.
Luo
,
X.
Cao
, and
P.
Jin
,
ACS Appl. Mater. Interfaces
11
,
41229
(
2019
).
35.
Y.
Gao
,
S.
Wang
,
L.
Kang
,
Z.
Chen
,
J.
Du
,
X.
Liu
,
H.
Luo
, and
M.
Kanehira
,
Energy Environ. Sci.
5
,
8234
(
2012
).
36.
Y.
Gao
,
C.
Cao
,
L.
Dai
,
H.
Luo
,
M.
Kanehira
,
Y.
Ding
, and
Z. L.
Wang
,
Energy Environ. Sci.
5
,
8708
(
2012
).
37.
T.
Chang
,
X.
Cao
,
S.
Bao
,
S.
Ji
,
H.
Luo
, and
P.
Jin
,
Adv. Manuf.
6
,
1
(
2018
).
38.
K.
Laaksonen
,
S. Y.
Li
,
S. R.
Puisto
,
N. K. J.
Rostedt
,
T.
Ala-Nissila
,
C. G.
Granqvist
,
R. M.
Nieminen
, and
G. A.
Niklasson
,
Sol. Energy Mater. Sol. Cells
130
,
132
(
2014
).
39.
M. Q.
Zhu
,
L.
Zhu
,
J. J.
Han
,
W.
Wu
,
J. K.
Hurst
, and
A. D. Q.
Li
,
J. Am. Chem. Soc.
128
,
4303
(
2006
).

Supplementary Material

You do not currently have access to this content.