The ternary alloy of germanium, antimony, and tellurium (GST) is widely used as a material for phase-change memories. In particular, the stoichiometric compound Ge2Sb2Te5 exhibits a rapid congruent crystallization. To increase the temperature at which spontaneous crystallization erases the stored information, alloys that are enriched in germanium have been investigated. Their crystallization is accompanied by segregation and eventually the nucleation of a new, germanium-rich phase. In order to model the redistribution of alloy components and the time evolution of the microstructure during device operations, we develop a multi-phase-field model for the crystallization of GST that includes segregation and couple it with orientation fields that describe the grain structure. We demonstrate that this model is capable to capture both the emergence of a two-phase polycrystalline structure starting from an initially amorphous material, and the melting and recrystallization during the SET and RESET operations in a memory cell of the “wall” type.

1.
A.
Chen
, “
A review of emerging non-volatile memory (NVM) technologies and applications
,”
Solid State Electron.
125
,
25
38
(
2016
).
2.
H.-S. P.
Wong
,
S.
Raoux
,
S.
Kim
,
J.
Liang
,
J.
Reifenberg
,
B.
Rajendran
,
M.
Asheghi
, and
K.
Goodson
, “
Phase change memory
,”
Proc. IEEE
98
,
2201
2227
(
2010
).
3.
M.
Wuttig
and
N.
Yamada
, “
Phase-change materials for rewriteable data storage
,”
Nat. Mater.
6
,
824
832
(
2007
).
4.
S. R.
Ovshinsky
, “
Reversible electrical switching phenomena in disordered structures
,”
Phys. Rev. Lett.
21
,
1450
1453
(
1968
).
5.
N.
Yamada
,
E.
Ohno
,
N.
Akahira
,
K.
Nishiuchi
,
K.
Nagata
, and
M.
Takao
, “
High speed overwritable phase change optical disk material
,”
Jpn. J. Appl. Phys.
26
,
61
(
1987
).
6.
N.
Yamada
,
E.
Ohno
,
K.
Nishiuchi
,
N.
Akahira
, and
M.
Takao
, “
Rapid phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory
,”
J. Appl. Phys.
69
,
2849
2856
(
1991
).
7.
G.
Servalli
, “
A 45nm generation phase change memory technology
” in
IEEE Electron Devices Soc (EDS)
, (
IEEE
,
Washington, DC
,
2009
), pp.
1
4
.
8.
I.
Friedrich
,
V.
Weidenhof
,
W.
Njoroge
,
P.
Franz
, and
M.
Wuttig
, “
Structural transformations of [formula omitted] films studied by electrical resistance measurements
,”
J. Appl. Phys.
87
,
4130
4134
(
2000
).
9.
F.
Arnaud
,
P.
Zuliani
,
J.
Reynard
,
A.
Gandolfo
,
F.
Disegni
,
P.
Mattavelli
,
E.
Gomiero
,
G.
Samanni
,
C.
Jahan
,
R.
Berthelon
,
O.
Weber
,
E.
Richard
,
V.
Barral
,
A.
Villaret
,
S.
Kohler
,
J.
Grenier
,
R.
Ranica
,
C.
Gallon
,
A.
Souhaite
,
D.
Ristoiu
,
L.
Favennec
,
V.
Caubet
,
S.
Delmedico
,
N.
Cherault
,
R.
Beneyton
,
S.
Chouteau
,
P.
Sassoulas
,
A.
Vernhet
,
Y.
Le Friec
,
F.
Domengie
,
L.
Scotti
,
D.
Pacelli
,
J.
Ogier
,
F.
Boucard
,
S.
Lagrasta
,
D.
Benoit
,
L.
Clement
,
P.
Boivin
,
P.
Ferreira
,
R.
Annunziata
, and
P.
Cappelletti
, “
Truly innovative 28 nm fdsoi technology for automotive micro-controller applications embedding 16 mb phase change memory
” in
IEEE Electron Devices Soc (EDS)
(
IEEE
,
Washington, DC
,
2018
), pp. 18.4.1–18.4.4.
10.
H. Y.
Cheng
,
T. H.
Hsu
,
S.
Raoux
,
J. Y.
Wu
,
P. Y.
Du
,
M.
Breitwisch
,
Y.
Zhu
,
E. K.
Lai
,
E.
Joseph
,
S.
Mittal
,
R.
Cheek
,
A.
Schrott
,
S. C.
Lai
,
H. L.
Lung
, and
C.
Lam
, “A high performance phase change memory with fast switching speed and high temperature retention by engineering the GexSbyTez phase change material,” in 2011 IEEE International Electron Devices Meeting (IEDM), IEEE Electron Devices Soc (EDS) (IEEE, Washington, DC, 2011).
11.
P.
Zuliani
,
E.
Varesi
,
E.
Palumbo
,
M.
Borghi
,
I.
Tortorelli
,
D.
Erbetta
,
G. D.
Libera
,
N.
Pessina
,
A.
Gandolfo
,
C.
Prelini
,
L.
Ravazzi
, and
R.
Annunziata
, “
Overcoming temperature limitations in phase change memories with optimized GeSbTe
,”
IEEE Trans. Electron Devices
60
,
4020
4026
(
2013
).
12.
P.
Zuliani
,
E.
Palumbo
,
M.
Borghi
,
G.
Dalla Libera
, and
R.
Annunziata
, “
Engineering of chalcogenide materials for embedded applications of phase change memory
,”
Solid State Electron.
111
,
27
31
(
2015
).
13.
M.
Coué
, “Electrical characterization and TEM study of the physical mechanisms implied in reliability issues of Ge-rich GST phase-change memories”
Ph.D. Thesis
(
University of Grenoble Alpes
,
2016
).
14.
W. J.
Boettinger
,
J. A.
Warren
,
C.
Beckermann
, and
A.
Karma
, “
Phase-field simulation of solidification
,”
Annu. Rev. Mater. Res.
32
,
163
194
(
2002
).
15.
I.
Steinbach
, “
Phase-field models in materials science
,”
Model. Simul. Mater. Sci. Eng.
17
,
073001
(
2009
).
16.
M.
Plapp
, “
Phase-field modelling of solidification microstructures
,”
J. Indian Inst. Sci.
96
,
179
198
(
2016
).
17.
N.
Provatas
and
K.
Elder
,
Phase-Field Methods in Materials Science and Engineering
(
Wiley-VCH
,
Weinheim
,
2010
).
18.
M.
Plapp
, “Phase-field models,” in The Handbook of Crystal Growth, 2nd ed., edited by T. Nishinaga (Elsevier, Amsterdam, 2015), Vol. 1B, pp. 631–668.
19.
Y.
Kwon
,
D.-H.
Kang
,
K.-H.
Lee
,
Y.-K.
Park
, and
C.-H.
Chung
, “
Analysis of intrinsic variation of data retention in phase-change memory using phase-field method
,”
IEEE Electron Device Lett.
34
,
411
413
(
2013
).
20.
O.
Cueto
,
V.
Sousa
,
G.
Navarro
, and
S.
Blonkowski
, “Coupling the phase-field method with an electrothermal solver to simulate phase change mechanisms in PCRAM cells,” in 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) (IEEE, Washington, DC, 2015), pp. 301–304.
21.
F.
Tabatabaei
,
G.
Boussinot
,
R.
Spatschek
,
E.
Brener
, and
M.
Apel
, “
Phase field modeling of rapid crystallization in the phase-change material AIST
,”
J. Appl. Phys.
122
,
045108
(
2017
).
22.
R.
Folch
and
M.
Plapp
, “
Quantitative phase-field modeling of two-phase growth
,”
Phys. Rev. E
72
,
011602
(
2005
).
23.
M.
Plapp
, “
Unified derivation of phase-field models for alloy solidification from a grand-potential functional
,”
Phys. Rev. E
84
,
031601
(
2011
).
24.
A.
Choudhury
and
B.
Nestler
, “
Grand-potential formulation for multicomponent phase transformations combined with thin-interface asymptotics of the double-obstacle potential
,”
Phys. Rev. E
85
,
021602
(
2012
).
25.
H.
Henry
,
J.
Mellenthin
, and
M.
Plapp
, “
Orientation-field model for polycrystalline solidification with a singular coupling between order and orientation
,”
Phys. Rev. B
86
,
054117
(
2012
).
26.
S.
Bordas
,
M. T.
Clavaguer-Mora
,
B.
Legendre
, and
C.
Hancheng
, “
Phase diagram of the ternary system Ge–Sb–Te: II. The subternary Ge-GeTe-Sb2Te3-Sb
,”
Thermochim. Acta
107
,
239
265
(
1986
).
27.
G.
Navarro
,
M.
Coué
,
A.
Kiouseloglou
,
P.
Noé
,
F.
Fillot
,
V.
Delaye
,
A.
Persico
,
A.
Roule
,
M.
Bernard
,
C.
Sabbione
,
D.
Blachier
,
V.
Sousa
,
L.
Perniola
,
S.
Maitrejean
,
A.
Cabrini
,
G.
Torelli
,
P.
Zuliani
,
R.
Annunziata
,
E.
Palumbo
,
M.
Borghi
,
G.
Reimbold
, and
B.
De Salvo
, “Trade-off between set and data retention performance thanks to innovative materials for phase-change memory” in
IEEE Electron Devices Soc (EDS)
(
IEEE
,
Washington, DC
,
2013
), pp. 21.5.1–21.5.4.
28.
C.
Thompson
and
F.
Spaepen
, “
On the approximation of the free energy change on crystallization
,”
Acta Metall.
27
,
1855
1859
(
1979
).
29.
H.
Lukas
,
S. G.
Fries
, and
B.
Sundman
,
Computational Thermodynamics: The CALPHAD Method
(
Cambridge University Press
,
Cambridge
,
2007
).
30.
M.
Agati
,
F.
Renaud
,
D.
Benoit
, and
A.
Claverie
, “
In situ transmission electron microscopy studies of the crystallization of N-doped Ge-rich GeSbTe materials
,”
MRS Commun.
8
,
1145
1152
(
2018
).
31.
M.
Agati
,
C.
Gay
,
D.
Benoit
, and
A.
Claverie
, “
Effects of surface oxidation on the crystallization characteristics of Ge-rich Ge-Sb-Te alloys thin films
,”
Appl. Surf. Sci.
518
,
146227
(
2020
).
32.
J.
Orava
,
A. L.
Greer
,
B.
Gholipour
,
D. W.
Hewak
, and
C. E.
Smith
, “
Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry
,”
Nat. Mater.
11
,
279
283
(
2012
).
33.
S. G.
Kim
,
W. T.
Kim
, and
T.
Suzuki
, “
Phase-field model for binary alloys
,”
Phys. Rev. E
60
,
7186
7197
(
1999
).
34.
S. M.
Allen
and
J. W.
Cahn
, “
A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening
,”
Acta Metall.
27
,
1085
1095
(
1979
).
35.
R.
Kobayashi
,
J. A.
Warren
, and
W.
Craig Carter
, “
A continuum model of grain boundaries
,”
Physica D
140
,
141
150
(
2000
).
36.
R.
Kobayashi
and
J.-A.
Warren
, “
Modeling the formation and dynamics of polycrystals in 3D
,”
Physica A
356
,
127
132
(
2005
).
37.
T.
Pusztai
,
G.
Bortel
, and
L.
Gránásy
, “
Phase field theory of polycrystalline solidification in three dimensions
,”
Europhys. Lett.
71
,
131
137
(
2005
).
38.
B.
Korbuly
,
T.
Pusztai
,
H.
Henry
,
M.
Plapp
,
M.
Apel
, and
L.
Gránásy
, “
Grain coarsening in two-dimensional phase-field models with an orientation field
,”
Phys. Rev. E
95
,
053303
(
2017
).
39.
M.
Plapp
, “
Remarks on some open problems in phase-field modelling of solidification
,”
Philos. Mag.
91
,
25
44
(
2011
), arXiv:1004.4502.
40.
J. J.
Hoyt
,
B.
Sadigh
,
M.
Asta
, and
S. M.
Foiles
, “
Kinetic phase field parameters for the Cu-Ni system derived from atomistic computations
,”
Acta Mater.
47
,
3181
(
1999
).
41.
C.
Reina
,
L.
Sandoval
, and
J.
Marian
, “
Mesoscale computational study of the nanocrystallization of amorphous Ge via a self-consistent atomistic phase-field model
,”
Acta Mater.
77
,
335
351
(
2014
).
42.
J. S.
Langer
, “An introduction to the kinetics of first-order phase transitions,” in Solids Far from Equilibrium, Edition Aléa Saclay, edited by C. Godrèche (Cambridge University Press, Cambridge, 1991), pp. 297–363.
43.
G.
Novielli
,
A.
Ghetti
,
E.
Varesi
,
A.
Mauri
, and
R.
Sacco
, “Atomic migration in phase change materials,” in 2013 IEEE International Electron Devices Meeting (IEEE, Washington, DC, 2013), pp. 22.3.1–22.3.4.
44.
L. S.
Darken
, “
Diffusion, mobility and their interrelation through free energy in binary metallic systems
,”
Trans. AIME
175
,
184
210
(
1948
).
45.
L.
Gránásy
,
T.
Pusztai
, and
J. A.
Warren
, “
Modelling polycrystalline solidification using phase field theory
,”
J. Phys. Condens. Matter
16
,
R1205
R1235
(
2004
).
46.
L.
Gránásy
,
T.
Pusztai
,
G.
Tegze
,
J. A.
Warren
, and
J. F.
Douglas
, “
Growth and form of spherulites
,”
Phys. Rev. E
72
,
011605
(
2005
).
47.
P.
Zalden
,
K.
Siegert
,
S.
Rols
,
H.
Fischer
,
F.
Schlich
,
T.
Hu
, and
M.
Wuttig
, “
Specific heat of (GeTe)x(Sb2Te3)1x phase-change materials: The impact of disorder and anharmonicity
,”
Chem. Mater.
26
,
2307
2312
(
2014
).
48.
J. J.
Hoyt
,
M.
Asta
, and
A.
Karma
, “
Atomistic and continuum modeling of dendritic solidification
,”
Mat. Sci. Eng. R
41
,
121
(
2003
).
49.
A.
Monas
,
R.
Spatschek
,
C.
Hüter
,
F.
Tabatabaei
,
E. A.
Brener
, and
M.
Apel
, “
Phase field modeling of phase transitions stimulated by Joule heating
,”
J. Cryst. Growth
375
,
39
48
(
2013
).
You do not currently have access to this content.