The absorber layers in perovskite solar cells possess a high concentration of mobile ion vacancies. These vacancies undertake thermally activated hops between neighboring lattice sites. The mobile vacancy concentration N0 is much higher and the activation energy EA for ion hops is much lower than is seen in most other semiconductors due to the inherent softness of perovskite materials. The timescale at which the internal electric field changes due to ion motion is determined by the vacancy diffusion coefficient Dv and is similar to the timescale on which the external bias changes by a significant fraction of the open-circuit voltage at typical scan rates. Therefore, hysteresis is often observed in which the shape of the current–voltage, J–V, characteristic depends on the direction of the voltage sweep. There is also evidence that this defect migration plays a role in degradation. By employing a charge transport model of coupled ion-electron conduction in a perovskite solar cell, we show that EA for the ion species responsible for hysteresis can be obtained directly from measurements of the temperature variation of the scan-rate dependence of the short-circuit current and of the hysteresis factor H. This argument is validated by comparing EA deduced from measured J–V curves for four solar cell structures with density functional theory calculations. In two of these structures, the perovskite is MAPbI3, where MA is methylammonium, CH3NH3; the hole transport layer (HTL) is spiro (spiro-OMeTAD, 2,2,7,7- tetrakis[N,N-di(4-methoxyphenyl) amino]-9,9-spirobifluorene) and the electron transport layer (ETL) is TiO2 or SnO2. For the third and fourth structures, the perovskite layer is FAPbI3, where FA is formamidinium, HC(NH2)2, or MAPbBr3, and in both cases, the HTL is spiro and the ETL is SnO2. For all four structures, the hole and electron extracting electrodes are Au and fluorine doped tin oxide, respectively. We also use our model to predict how the scan rate dependence of the power conversion efficiency varies with EA, N0, and parameters determining free charge recombination.

1.
A.
Extance
, “
The reality behind solar power’s next star material
,”
Nature
570
,
429
(
2019
).
2.
D. P.
Buemi
, “Perovskite solar cells: Hero, villain or just plain fantasy?,” Solar Power World (2020).
3.
M. S.
Islam
, “
Ionic transport in ABO3 perovskite oxides: A computer modelling tour
,”
J. Mater. Chem.
10
,
1027
1038
(
2000
).
4.
W. A.
Dunlap-Shohl
,
Y.
Zhou
,
N. P.
Padture
, and
D. B.
Mitzi
, “
Synthetic approaches for halide perovskite thin films
,”
Chem. Rev.
119
,
3193
3295
(
2019
).
5.
S. D.
Stranks
and
H. J.
Snaith
, “
Metal-halide perovskite for photovoltaic and light-emitting devices
,”
Nat. Nanotech.
10
,
391
402
(
2015
).
6.
C.
Li
,
S.
Tscheuschner
,
F.
Paulus
,
P. E.
Hopkinson
,
J.
Kießling
,
A.
Köhler
,
Y.
Vaynzof
, and
S.
Huettner
, “
Iodine migration and its effect on hysteresis in perovskite solar cells
,”
Adv. Mater.
28
,
2446
2454
(
2016
).
7.
A.
Bercegol
,
S.
Cacovich
,
G.
Vidon
,
S.
Mejaouri
,
A.
Yaiche
,
J.-B.
Puel
,
C.
Longeaud
,
J.-F.
Guillemoles
,
S.
Jutteau
,
J.
Rousset
,
D.
Ory
, and
L.
Lombez
, “
Imaging electron, hole, and ion transport in halide perovskite
,”
J. Phys. Chem. C
124
,
11741
11748
(
2020
).
8.
W.
Yu
,
F.
Li
,
L.
Yu
,
M. R.
Niazi
,
Y.
Zou
,
D.
Corzo
,
A.
Basu
,
C.
Ma
,
S.
Dey
,
M. L.
Tietze
,
U.
Buttner
,
X.
Wang
,
Z.
Wang
,
M. N.
Hedhili
,
C.
Guo
,
T.
Wu
, and
A.
Amassian
, “
Native defect-induced hysteresis behavior in organolead iodide perovskite solar cells
,”
Nat. Commun.
9
,
5354
(
2018
).
9.
B.
Hwang
and
J.-S.
Lee
, “
Hybrid organic-inorganic perovskite memory with long-term stability in air
,”
Sci. Rep.
7
,
673
(
2017
).
10.
N. E.
Courtier
,
J. M.
Cave
,
J. M.
Foster
,
A. B.
Walker
, and
G.
Richardson
, “
How transport layer properties affect perovskite solar cell performance: Insights from a coupled charge transport/ion migration model
,”
Energy Environ. Sci.
12
,
396
409
(
2019
).
11.
M. V.
Khenkin
,
E. A.
Katz
,
A.
Abate
,
G.
Bardizza
, and
J. J. E. A.
Berry
, “
Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures
,”
Nat. Energy
5
,
35
49
(
2020
).
12.
N.
Wu
,
D.
Walter
,
A.
Fell
,
Y.
Wu
, and
K.
Weber
, “
The impact of mobile ions on the steady-state performance of perovskite solar cells
,”
J. Phys. Chem. C
124
,
219
229
(
2020
).
13.
C.-J.
Tong
,
L.
Li
,
L.-M.
Liu
, and
O. V.
Prezhdo
, “
Synergy between ion migration and charge carrier recombination in metal-halide perovskites
,”
J. Am. Chem. Soc.
142
,
3060
3068
(
2020
).
14.
K.
Domanski
,
B.
Roose
,
T.
Matsui
,
M.
Saliba
,
S.-H.
Turren-Cruz
,
J.-P.
Correa-Baena
,
C. R.
Carmona
,
G.
Richardson
,
J. M.
Foster
,
F.
De Angelis
,
J. M.
Ball
,
A.
Petrozza
,
N.
Mine
,
M. K.
Nazeeruddin
,
W.
Tress
,
M.
Grätzel
,
U.
Steiner
,
A.
Hagfeldt
, and
A.
Abate
, “
Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells
,”
Energy Environ. Sci.
10
,
604
613
(
2017
).
15.
G. A.
Nemnes
,
C.
Besleaga
,
V.
Stancu
,
D. E.
Dogaru
,
L. N.
Leonat
,
L.
Pintilie
,
K.
Torfason
,
M.
Ilkov
,
A.
Manolescu
, and
I.
Pintilie
, “
Normal and inverted hysteresis in perovskite solar cells
,”
J. Phys. Chem. C
121
,
11207
11214
(
2017
).
16.
G. A.
Nemnes
,
C.
Besleaga
,
A. G.
Tomulescu
,
A.
Palici
,
L.
Pintilie
,
A.
Manolescu
, and
I.
Pintilie
, “
How measurement protocols influence the dynamic J-V characteristics of perovskite solar cells: Theory and experiment
,”
Sol. Energy
173
,
976
983
(
2018
).
17.
Y.
Hou
,
S.
Scheiner
,
X.
Tang
,
N.
Gasparini
,
M.
Richter
,
N.
Li
,
P.
Schweizer
,
S.
Chen
,
H.
Chen
,
C. O. R.
Quiroz
,
X.
Du
,
G. J.
Matt
,
A.
Osvet
,
E.
Spiecker
,
R. H.
Fink
,
A.
Hirsch
,
M.
Halik
, and
C. J.
Brabec
, “
Suppression of hysteresis effects in organohalide perovskite solar cells
,”
Adv. Mater. Interfaces
4
,
1700007
(
2017
).
18.
H. J.
Snaith
,
A.
Abate
,
J. M.
Ball
,
G. E.
Eperon
,
T.
Leijtens
,
N. K.
Noel
,
S. D.
Stranks
,
J. T.-W.
Wang
,
K.
Wojciechowski
, and
W.
Zhang
, “
Anomalous hysteresis in perovskite solar cells
,”
J. Phys. Chem. Lett.
5
,
1511
1515
(
2014
).
19.
S. N.
Habisreutinger
,
N. K.
Noel
, and
H. J.
Snaith
, “
Hysteresis index: A figure without merit for quantifying hysteresis in perovskite solar cells
,”
ACS Energy Lett.
118
,
2472
2476
(
2018
).
20.
A.
Walsh
,
D. O.
Scanlon
,
S.
Chen
,
X. G.
Gong
, and
S.-H.
Wei
, “
Self-regulation mechanism for charged point defects in hybrid halide perovskites
,”
Angew. Chem. Int. Ed.
127
,
1811
(
2015
).
21.
C.-J.
Tong
,
W.
Geng
,
O. V.
Prezhdo
, and
L.-M.
Liu
, “
Role of methylammonium orientation in ion diffusion and current–voltage hysteresis in the CH3NH3PbI3 perovskite
,”
ACS Energy Lett.
2
,
1997
2004
(
2017
).
22.
C.
Eames
,
J. M.
Frost
,
P. R. F.
Barnes
,
B. C.
O’Regan
,
A.
Walsh
, and
M. S.
Islam
, “
Ionic transport in hybrid lead iodide perovskite solar cells
,”
Nat. Commun.
6
,
7497
(
2015
).
23.
A.
Walsh
and
S. D.
Stranks
, “
Taking control of ion transport in halide perovskite solar cells
,”
ACS Energy Lett.
3
,
1983
1990
(
2018
).
24.
S.
Reichert
,
Q.
An
,
Y.-W.
Woo
,
A.
Walsh
,
Y.
Vaynzof
, and
D.
Carsten
, “Probing the ionic defect landscape in halide perovskite solar cells,” arXiv:2005.06942 (2020).
25.
G.
Richardson
,
S. E. J.
O’Kane
,
R. G.
Niemann
,
T. A.
Peltola
,
J. M.
Foster
,
P. J.
Cameron
, and
A. B.
Walker
, “
Can slow-moving ions explain hysteresis in the current-voltage curves of perovskite solar cells?
,”
Energy Environ. Sci.
9
,
1476
1485
(
2016
).
26.
R. A.
Kerner
and
B. P.
Rand
, “
Ionic–electronic ambipolar transport in metal halide perovskites: Can electronic conductivity limit ionic diffusion?
,”
J. Phys. Chem. Lett.
9
,
132
137
(
2018
).
27.
J.
Mizusaki
,
K.
Arai
, and
K.
Fueki
, “
Ionic conduction of the perovskite-type halides
,”
Solid State Ion.
11
,
203
211
(
1983
).
28.
A.
Pockett
,
G. E.
Eperon
,
N.
Sakai
,
H. J.
Snaith
,
L. M.
Peter
, and
P. J.
Cameron
, “
Microseconds, milliseconds and seconds: Deconvoluting the dynamic behaviour of planar perovskite solar cells
,”
Phys. Chem. Chem. Phys.
19
,
5959
5970
(
2017
).
29.
A.
Rizzo
,
F.
Lamberti
,
M.
Buonomo
,
N.
Wrachien
,
L.
Torto
,
N.
Lago
,
S.
Sansoni
,
R.
Pilot
,
M.
Prato
,
N.
Michieli
,
M.
Meneghetti
,
G.
Meneghesso
, and
A.
Cester
, “
Understanding lead iodide perovskite hysteresis and degradation causes by extensive electrical characterization
,”
Sol. Energy Mater. Sol. Cells
189
,
43
52
(
2019
).
30.
S.
Meloni
,
T.
Moehl
,
W.
Tress
,
M.
Franckevičius
,
M.
Saliba
,
Y. H.
Lee
,
P.
Gao
,
M. K.
Nazeeruddin
,
S. M.
Zakeeruddin
,
U.
Rothlisberger
, and
M.
Grätzel
, “
Ionic polarization-induced current-voltage hysteresis in CH3NH3PbX3 perovskite solar cells
,”
Nat. Commun.
7
,
10334
(
2016
).
31.
O.
Almora
,
I.
Zarazua
,
I.
Mas-Marza
,
E.
Mora-Sero
,
J.
Bisquert
, and
G.
Garcia-Belmonte
, “
Capacitive dark currents, hysteresis, and electrode polarization in lead halide perovskite solar cells
,”
J. Phys. Chem. Lett.
6
,
1645
1652
(
2015
).
32.
N. E.
Courtier
,
J. M.
Cave
,
S. E. J.
O’Kane
,
A. B.
Walker
,
G.
Richardson
, and
J. M.
Foster
, “
IonMonger: A free and fast planar perovskite solar cell simulator with coupled ion vacancy and charge carrier dynamics
,”
J. Comput. Electron.
18
,
1435
1449
(
2019
).
33.
L. M.
Herz
, “
Charge-carrier dynamics in organic-inorganic metal halide perovskites
,”
Annu. Rev. Phys. Chem.
67
,
65
89
(
2016
).
34.
S.
Weber
,
I. M.
Hermes
,
S. H.
Turren Cruz
,
C.
Gort
,
V. W.
Bergmann
,
L.
Gilson
,
A.
Hagfeldt
,
M.
Grätzel
,
W.
Tress
, and
R.
Berger
, “
How the formation of interfacial charge causes hysteresis in perovskite solar cells
,”
Energy Environ. Sci.
11
2404
2414
(
2018
).
35.
D.
Bryant
,
S.
Wheeler
,
B. C.
O’Regan
,
T.
Watson
,
P. R. F.
Barnes
,
D.
Worsley
, and
J.
Durrant
, “
Observable hysteresis at low temperature in ‘hysteresis free’ organic-inorganic lead halide perovskite solar cells
,”
J. Phys. Chem. Lett.
6
,
3190
3194
(
2015
).
36.
I.
Levine
,
P. K.
Nayak
,
J. T.-W.
Wang
,
N.
Sakai
,
S.
Van Reenen
,
T. M.
Brenner
,
S.
Mukhopadhyay
,
H. J.
Snaith
,
G.
Hodes
, and
D.
Cahen
, “
Interface-dependent ion migration/accumulation controls hysteresis in MAPbI3 solar cells
,”
J. Phys. Chem. C
120
,
16399
16411
(
2016
).
37.
A.
Oranskaia
,
J.
Yin
,
O. M.
Bakr
,
J.-L.
Brédas
, and
O. F.
Mohammed
, “
Halogen migration in hybrid perovskites: The organic cation matters
,”
J. Phys. Chem. Lett.
9
,
5474
(
2018
).
38.
T.-Y.
Yang
,
G.
Gregori
,
N.
Pellet
,
M.
Grätzel
, and
J.
Maier
, “
The significance of ion conduction in a hybrid organic-inorganic lead-iodide-based perovskite photosensitizer
,”
Angew. Chem. Int. Ed.
54
,
7905
(
2015
).
39.
E. M.
Tennyson
,
T. A. S.
Doherty
, and
S. D.
Stranks
, “
Heterogeneity at multiple length scales in halide perovskite semiconductors
,”
Nat. Rev. Mater.
4
,
573
587
(
2019
).
40.
S.
van Reenen
,
M.
Kemerink
, and
H. J.
Snaith
, “
Modeling anomalous hysteresis in perovskite solar cells
,”
J. Phys. Chem. Lett.
6
,
3808
3814
(
2015
).
41.
D.
Moia
,
I.
Gelmetti
,
P.
Calado
,
W.
Fisher
,
M.
Stringer
,
O.
Game
,
Y.
Hu
,
P.
Docampo
,
D.
Lidzey
,
E.
Palomares
,
J.
Nelson
, and
P. R. F.
Barnes
, “
Ionic-to-electronic current amplification in hybrid perovskite solar cells: Ionically gated transistor-interface circuit model explains hysteresis and impedance of mixed conducting devices
,”
Energy Environ. Sci.
12
,
1296
1308
(
2019
).
42.
S. E. J.
O’Kane
,
G.
Richardson
,
A.
Pockett
,
R. G.
Niemann
,
J. M.
Cave
,
N.
Sakai
,
G. E.
Eperon
,
H. J.
Snaith
,
J. M.
Foster
,
P. J.
Cameron
, and
A. B.
Walker
, “
Measurement and modelling of dark current decay transients in perovskite solar cells
,”
J. Mater. Chem. C
5
,
452
462
(
2017
).
43.
N. E.
Courtier
,
G.
Richardson
, and
J. M.
Foster
, “
A fast and robust numerical scheme for solving models of charge carrier transport and ion vacancy motion in perovskite solar cells
,”
Appl. Math. Model.
63
,
329
348
(
2018
).
44.
D.
Ghosh
,
P.
Walsh Atkins
,
M. S.
Islam
,
A. B.
Walker
, and
C.
Eames
, “
Good vibrations: Locking of octahedral tilting in mixed-cation iodide perovskites for solar cells
,”
ACS Energy Lett.
2
,
2424
2429
(
2017
).
45.
B.
Charles
,
J.
Dillon
,
O. J.
Weber
,
M. S.
Islam
, and
M. T.
Weller
, “
Understanding the stability of mixed A-cation lead iodide perovskites
,”
J. Mater. Chem. A
5
,
22495
22499
(
2017
).
46.
M.
Saliba
,
T.
Matsui
,
J.-Y.
Seo
,
K.
Domanski
,
J.-P.
Correa-Baena
,
M. K.
Nazeeruddin
,
S. M.
Zakeeruddin
,
W.
Tress
,
A.
Abate
,
A.
Hagfeldt
, and
M.
Grätzel
, “
Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency
,”
Energy Environ. Sci.
9
,
1989
1997
(
2016
).
47.
S. P.
Senanayak
,
B.
Yang
,
T. H.
Thomas
,
N.
Giesbrecht
,
W.
Huang
,
E.
Gann
,
B.
Nair
,
K.
Goedel
,
S.
Guha
,
X.
Moya
,
C. R.
McNeill
,
P.
Docampo
,
A.
Sadhanala
,
R. H.
Friend
, and
H.
Sirringhaus
, “
Understanding charge transport in lead iodide perovskite thin-film field-effect transistors
,”
Sci. Adv.
3
,
e1601935
(
2017
).
48.
T. W.
Jones
,
A.
Osherov
,
M.
Alsari
,
M.
Sponseller
,
B. C.
Duck
,
Y.-K.
Jung
,
C.
Settens
,
F.
Niroui
,
R.
Brenes
,
C. V.
Stan
,
Y.
Li
,
M.
Abdi-Jalebi
,
N.
Tamura
,
J. E.
Macdonald
,
M.
Burghammer
,
R. H.
Friend
,
V.
Bulović
,
A.
Walsh
,
G. J.
Wilson
,
S.
Lilliu
, and
S. D.
Stranks
, “
Lattice strain causes non-radiative losses in halide perovskites
,”
Energy Environ. Sci.
12
,
596
606
(
2019
).
49.
P.
Calado
,
A. M.
Telford
,
D.
Bryant
,
X.
Li
,
J.
Nelson
,
B. C.
O’Regan
, and
P. R.
Barnes
, “
Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis
,”
Nat. Commun.
7
,
995
(
2016
).
50.
J.
O’Dwyer
,
The Theory of Electrical Conduction and Breakdown in Solid Dielectrics
(
Clarendon Press
,
Oxford
,
1973
).
51.
D. W.
Miller
,
G. E.
Eperon
,
E. T.
Roe
,
C. W.
Warren
,
H. J.
Snaith
, and
M. C.
Lonergan
, “
Defect states in perovskite solar cells associated with hysteresis and performance
,”
Appl. Phys. Lett.
109
,
153902
(
2016
).
52.
N.
Aristidou
,
C.
Eames
,
I.
Sanchez-Molina
,
X.
Bu
,
J.
Kosco
,
M.
Islam
, and
S.
Haque
, “
Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells
,”
Nat. Commun.
8
,
15215
(
2017
).
53.
D. A.
Jacobs
,
H.
Shen
,
F.
Pfeffer
,
J.
Peng
,
T. P.
White
,
F. J.
Beck
, and
K. R.
Catchpole
, “
The two faces of capacitance: New interpretations for electrical impedance measurements of perovskite solar cells and their relation to hysteresis
,”
J. Appl. Phys.
124
,
225702
(
2018
).
54.
M.
Neukom
,
A.
Schiller
,
S.
Züfle
,
E.
Knapp
,
J.
Ávila
,
D.
Pérez-del Rey
,
C.
Dreessen
,
K. P.
Zanoni
,
M.
Sessolo
,
H. J.
Bolink
, and
B.
Ruhstaller
, “
Consistent device simulation model describing perovskite solar cells in steady-state, transient, and frequency domain
,”
ACS Appl. Mater. Interfaces
11
,
23320
23328
(
2019
).
55.
T.-Y.
Zhu
and
D.-J.
Shu
, “
Role of ionic charge accumulation in perovskite solar cell: Carrier transfer in bulk and extraction at interface
,”
J. Phys. Chem. C
123
,
5312
5320
(
2019
).
56.
D. A.
Jacobs
,
Y.
Wu
,
H.
Shen
,
C.
Barugkin
,
F. J.
Beck
,
T. P.
White
,
K.
Weber
, and
K. R.
Catchpole
, “
Hysteresis phenomena in perovskite solar cells: The many and varied effects of ionic accumulation
,”
Phys. Chem. Chem. Phys.
19
,
3094
3103
(
2017
).
57.
L.
Bertoluzzi
,
R. A.
Belisle
,
K. A.
Bush
,
R.
Cheacharoen
,
M. D.
McGehee
, and
B. C.
O’Regan
, “
In situ measurement of electric-field screening in hysteresis-free PTAA/FA0.83Cs0.17Pb(I0.83Br0.17)3/C60 perovskite solar cells gives an ion mobility of 3×107cm2/(Vs), 2 orders of magnitude faster than reported for metal-oxide-contacted perovskite cells with hysteresis
,”
J. Am. Chem. Soc.
140
,
12775
12784
(
2018
).
58.
J. L.
Minns
,
P.
Zajdel
,
D.
Chernyshov
,
W.
van Beek
, and
M. A.
Green
, “
Structure and interstitial iodide migration in hybrid perovskite methylammonium lead iodide
,”
Nat. Commun.
8
,
15152EP
(
2017
).
59.
A.
Senocrate
,
I.
Moudrakovski
,
G. Y.
Kim
,
T.-Y.
Yang
,
G.
Gregori
,
M.
Grätzel
, and
J.
Maier
, “
The nature of ion conduction in methylammonium lead iodide: A multimethod approach
,”
Angew. Chem. Int. Ed.
56
,
7755
7759
(
2017
).
60.
D.
Walter
,
A.
Fell
,
Y.
Wu
,
T.
Duong
,
C.
Barugkin
,
N.
Wu
,
T.
White
, and
K.
Weber
, “
Transient photovoltage in perovskite solar cells: Interaction of trap-mediated recombination and migration of multiple ionic species
,”
J. Phys. Chem. C
122
,
11270
11281
(
2018
).

Supplementary Material

You do not currently have access to this content.