Predictive modeling represents an emerging field that combines existing and novel methodologies aimed to rapidly understand physical mechanisms and concurrently develop new materials, processes, and structures. In the current study, previously unexplored predictive modeling in a key-enabled technology, the laser-based manufacturing, aims to automate and forecast the effect of laser processing on material structures. The focus is centered on the performance of representative statistical and machine learning algorithms in predicting the outcome of laser processing on a range of materials. Results on experimental data showed that predictive models were able to satisfactorily learn the mapping between the laser’s input variables and the observed material structure. These results are further integrated with simulation data aiming to elucidate the multiscale physical processes upon laser–material interaction. As a consequence, we augmented the adjusted simulated data to the experiment and substantially improved the predictive performance due to the availability of an increased number of sampling points. In parallel, an information-theoretic metric, which identifies and quantifies the regions with high predictive uncertainty, is presented, revealing that high uncertainty occurs around the transition boundaries. Our results can set the basis for a systematic methodology toward reducing material design, testing, and production cost via the replacement of expensive trial-and-error based manufacturing procedures with a precise pre-fabrication predictive tool.

1.
A. K.
Chitale
and
R. C.
Gupta
,
Product Design and Manufacturing
(
PHI Learning
,
2013
).
2.
S.
DorMohammdi
et al.,
J. Compos. Mater.
51
,
2181
(
2017
).
3.
L.
Del Re
,
F.
Allgöwer
,
L.
Glielmo
,
C.
Guardiola
, and
I.
Kolmanovsky
,
Automotive Model Predictive Control: Models, Methods and Applications
(
Springer
,
2010
), Vol. 402.
4.
A. Y.
Vorobyev
and
C.
Guo
,
Laser Photon. Rev.
7
,
385
(
2013
).
5.
V.
Zorba
et al.,
Adv. Mater.
20
,
4049
(
2008
).
6.
D.
Bäuerle
,
Laser Processing and Chemistry
(
Springer Science & Business Media
,
2013
).
7.
E. L.
Papadopoulou
et al.,
Tissue Eng. C Methods
16
,
497
(
2010
).
8.
C.
Simitzi
et al.,
Biomaterials
67
,
115
(
2015
).
9.
A.
Papadopoulos
et al.,
Adv. Mater.
31
,
1901123
(
2019
).
10.
E.
Stratakis
,
Sci. Adv. Mater.
4
,
407
(
2012
).
11.
E.
Stratakis
,
J.
Bonse
,
J.
Heitz
,
J.
Siegel
,
G. D.
Tsibidis
,
E.
Skoulas
,
A.
Papadopoulos
,
A.
Mimidis
,
A.-C.
Joel
,
P.
Comanns
,
J.
Kruger
,
C.
Florian
,
Y.
Fuentes-Edfuf
,
J.
Solis
, and
W.
Baumgartner
, “
Laser engineering of biomimetic surfaces
,”
Mater. Sci. Eng.: R: Rep.
141
,
100562
(
2020
).
12.
G. D.
Tsibidis
,
M.
Barberoglou
,
P. A.
Loukakos
,
E.
Stratakis
, and
C.
Fotakis
,
Phys. Rev. B
86
,
115316
(
2012
).
13.
G. D.
Tsibidis
,
C.
Fotakis
, and
E.
Stratakis
,
Phys. Rev. B
92
,
041405
(
2015
).
14.
G. D.
Tsibidis
,
E.
Stratakis
,
P.
Loukakos
, and
C.
Fotakis
,
Appl. Phys. A
114
,
57
(
2014
).
15.
T. J.-Y.
Derrien
,
T. E.
Itina
,
R.
Torres
,
T.
Sarnet
, and
M.
Sentis
,
J. Appl. Phys.
114
,
083104
(
2013
).
16.
J.
Skolski
et al.,
Phys. Rev. B
85
,
075320
(
2012
).
17.
J.
Bonse
,
J.
Krüger
,
S.
Höhm
, and
A.
Rosenfeld
,
J. Laser Appl.
24
,
042006
(
2012
).
18.
F.
Garrelie
et al.,
Opt. Express
19
,
9035
(
2011
).
19.
J.
Wang
and
C.
Guo
,
Appl. Phys. Lett.
87
,
251914
(
2005
).
20.
M.
Huang
,
F.
Zhao
,
Y.
Cheng
,
N.
Xu
, and
Z.
Xu
,
ACS Nano
3
,
4062
(
2009
).
21.
J.
Bonse
and
J.
Krüger
,
J. Appl. Phys.
108
,
034903
(
2010
).
22.
G. D.
Tsibidis
,
E.
Skoulas
,
A.
Papadopoulos
, and
E.
Stratakis
,
Phys. Rev. B
94
,
081305
(
2016
).
23.
Y.
Shimotsuma
,
P. G.
Kazansky
,
J.
Qiu
, and
K.
Hirao
,
Phys. Rev. Lett.
91
,
247405
(
2003
).
24.
B. N.
Chichkov
,
C.
Momma
,
S.
Nolte
,
F.
Von Alvensleben
, and
A.
Tünnermann
,
Appl. Phys. A
63
,
109
(
1996
).
25.
G. D.
Tsibidis
and
E.
Stratakis
,
J. Appl. Phys.
121
,
163106
(
2017
).
26.
G. D.
Tsibidis
and
E.
Stratakis
,
Sci. Rep.
10
,
8675
(
2020
).
27.
B.
Rethfeld
,
D. S.
Ivanov
,
M. E.
Garcia
, and
S. I.
Anisimov
,
J. Phys. D Appl. Phys.
50
,
193001
(
2017
).
28.
D. S.
Ivanov
et al.,
J. Appl. Phys.
107
,
013519
(
2010
).
29.
Z.
Lin
,
L. V.
Zhigilei
, and
V.
Celli
,
Phys. Rev. B
77
,
075133
(
2008
).
30.
P.
Raccuglia
et al.,
Nature
533
,
73
(
2016
).
31.
A. O.
Oliynyk
et al.,
Chem. Mater.
28
,
7324
(
2016
).
32.
J.
Francis
and
L.
Bian
,
Manuf. Lett.
20
,
10
(
2019
).
33.
S.
Tani
and
Y.
Kobayashi
,
Appl. Phys. A
124
,
265
(
2018
).
34.
B.
Mills
,
D. J.
Heath
,
J. A.
Grant-Jacob
, and
R. W.
Eason
,
Opt. Express
26
,
17245
(
2018
).
35.
D. J.
Heath
et al.,
Opt. Express
26
,
21574
(
2018
).
36.
A.
Agrawal
et al.,
Integrating Mater. Manuf. Innov.
3
,
8
(
2014
).
37.
R. O.
Duda
,
P. E.
Hart
, and
D. G.
Stork
,
Pattern Classification
, 2nd ed. (
Wiley
,
New York
,
2001
).
38.
C. M.
Bishop
,
Pattern Recognition and Machine Learning (Information Science and Statistics)
(
Springer
,
2007
).
39.
I.
Goodfellow
,
Y.
Bengio
, and
A.
Courville
,
Deep Learning
(
MIT Press
,
2016
).
40.
C. E.
Shannon
,
Bell Syst. Tech. J.
27
,
379
(
1948
).
41.
T. M.
Cover
and
J. A.
Thomas
,
Elements of Information Theory
, 2nd ed. (
Wiley-Interscience
,
2006
).
42.
E.
Skoulas
,
A.
Manousaki
,
C.
Fotakis
, and
E.
Stratakis
,
Sci. Rep.
7
,
1
(
2017
).
43.
S. V.
Kirner
et al.,
Appl. Phys. A
123
,
754
(
2017
).
44.
F. A.
Müller
,
C.
Kunz
, and
S.
Gräf
,
Materials
9
,
476
(
2016
).
45.
C. F.
Baron
et al.,
Beilstein J. Nanotechnol.
9
,
2802
(
2018
).
46.
J.
Bonse
,
S.
Höhm
,
S. V.
Kirner
,
A.
Rosenfeld
, and
J.
Krüger
,
IEEE J. Sel. Top. Quantum Electron.
23
,
9000615
(
2016
).
47.
A.
Rudenko
,
J.-P.
Colombier
, and
T. E.
Itina
,
Phys. Rev. B
93
,
075427
(
2016
).
48.
G. D.
Tsibidis
,
L.
Mouchliadis
,
M.
Pedio
, and
E.
Stratakis
,
Phys. Rev. B
101
,
075207
(
2020
).
49.
A.
Marini
,
C.
Hogan
,
M.
Grüning
, and
D.
Varsano
,
Comput. Phys. Commun.
180
,
1392
(
2009
).
50.
S. I.
Anisimov
,
B. L.
Kapeliovich
, and
T. L.
Perel'man
,
Zh. Eksp. Teor. Fiz.
66
,
776
(
1974
) [
Sov. Phys. JETP
11, 945 (1967)].
51.
G. D.
Tsibidis
et al.,
Appl. Phys. A
124
,
27
(
2018
).
52.
J.
Bonse
,
A.
Rosenfeld
, and
J.
Krüger
,
J. Appl. Phys.
106
,
104910
(
2009
).
53.
G. D.
Tsibidis
,
E.
Skoulas
, and
E.
Stratakis
,
Opt. Lett.
40
,
5172
(
2015
).
54.
A.
Rosenfeld
,
M.
Lorenz
,
R.
Stoian
, and
D.
Ashkenasi
,
Appl. Phys. A
69
,
S373
(
1999
).
55.
K. P.
Murphy
,
Machine Learning: A Probabilistic Perspective
(
MIT Press
,
Cambridge, MA
,
2013
).
56.
T.
Hastie
,
R.
Tibshirani
, and
J.
Friedman
, The Elements of Statistical Learning, Springer Series in Statistics (Springer, New York, 2001).
57.
R.
Tibshirani
,
J. R. Stat. Soc. Ser. B
58
,
267
(
1996
), available at https://www.jstor.org/stable/2346178.
58.
H.
Zou
and
T.
Hastie
,
J. R. Stat. Soc. Ser. B
67
,
301
(
2003
).
59.
C.
Cortes
and
V.
Vapnik
,
Mach. Learn.
20
,
273
(
1995
).
60.
B.
Schölkopf
and
A. J.
Smola
, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, Adaptive Computation and Machine Learning (MIT Press, 2002).
61.
N.
Cristianini
and
J.
Shawe-Taylor
,
An Introduction to Support Vector Machines and Other Kernel-based Learning Methods
, 1st ed. (
Cambridge University Press
,
2000
).
62.
R.
Caruana
and
A.
Niculescu-Mizil
, “An empirical comparison of supervised learning algorithms,” in Proceedings of the 23rd International Conference on Machine Learning (ACM, 2006), Vol. 148, pp. 161–168.
63.
Y.
Freund
and
R. E.
Schapire
,
J. Comput. Syst. Sci.
55
,
119
139
(
1997
).
64.
J. H.
Friedman
,
Ann. Stat.
29
,
1189
(
2000
).
65.
L.
Breiman
,
J. H.
Friedman
,
R. A.
Olshen
, and
C. J.
Stone
,
Classification and Regression Trees
(
Wadsworth and Brooks
,
Monterey, CA
,
1984
).
66.
T.
Chen
and
C.
Guestrin
, Xgboost
, “A scalable tree boosting system,” in KDD (ACM, 2016), pp 785–794.
67.
L.
Breiman
,
Mach. Learn.
45
,
5
(
2001
).
68.
J. P.
Egan
, Signal detection theory and ROC analysis, Series in Cognition and Perception (Academic Press, New York, NY, 1975).
69.
T.
Fawcett
,
Pattern Recognit. Lett.
27
,
861
(
2006
).
70.
A.
Renzaglia
,
L.
Doitsidis
,
A.
Martinelli
, and
E. B.
Kosmatopoulos
, “Cognitive-based adaptive control for cooperative multi-robot coverage,” in
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IEEE
,
2010
), pp. 3314–3320.

Supplementary Material

You do not currently have access to this content.