Irradiating porous silicon is expected to reduce thermal conductivity without altering the porous structure and can be studied by optical techniques provided that optical properties can be established reliably. Toward this end, mesoporous silicon (PSi), with a porosity of 56%, was prepared from a p+ Si wafer (0.01–0.02 Ω cm−1 resistivity) and was partially amorphized by irradiation in the electronic regime with 129Xe ions at two different energies (29 MeV and 91 MeV) and five fluences ranging from 1012 cm−2 to 3 × 1013 cm−2. The PSi structure is monitored by scanning electron microscopy. High-resolution transmission electron microscopy shows that the amorphous phase is homogeneous in volume and that there is no formation of amorphous–crystalline core–shell structures. An agreement is found between the thermal conductivity results obtained with micro-Raman thermometry, which is an optical contactless technique heating the sample in the depth, and scanning thermal microscopy, which is an electrical technique heating the sample by contact at the sample surface. A linear relation is established between the effective thermal conductivity and the amorphous fraction, predicting the thermal conductivity of fully amorphous porous Si below 1 W m−1 K−1. The obtained values are comparable to that of SiO2, reduced by a factor of 6 in comparison to non-irradiated porous samples (∼6.5 W m−1 K−1) and smaller than bulk silicon by more than two orders of magnitude.

1.
J.
Tang
,
H. T.
Wang
,
D. H.
Lee
,
M.
Fardy
,
Z.
Huo
,
T. P.
Russell
, and
P.
Yang
,
Nano Lett.
10
(
10
),
4279
4283
(
2010
).
2.
V.
Lacatena
,
M.
Haras
,
J. F.
Robillard
,
S.
Monfray
,
T.
Skotnicki
, and
E.
Dubois
,
Microelectron. Eng.
121
,
131
134
(
2014
).
3.
M.
Nomura
,
J.
Nakagawa
,
Y.
Kage
,
J.
Maire
,
D.
Moser
, and
O.
Paul
,
Appl. Phys. Lett.
106
,
143102
(
2015
).
4.
P. E.
Hopkins
,
C. M.
Reinke
,
M. F.
Su
,
R. H.
Olsson
,
E. A.
Shaner
,
Z. C.
Leseman
,
J. R.
Serrano
,
L. M.
Phinney
, and
I.
El-Kady
,
Nano Lett.
11
(
1
),
107
112
(
2011
).
5.
E.
Chávez- Ángel
,
J. S.
Reparaz
,
J.
Gomis-Bresco
,
M. R.
Wagner
,
J.
Cuffe
,
B.
Graczykowski
,
A.
Shchepetov
,
H.
Jiang
,
M.
Prunnila
,
J.
Ahopelto
,
F.
Alzina
,
C. M.
Sotomayor Torres
 et al.,
APL Mater.
2
(
1
),
012113
(
2014
).
6.
V.
Lysenko
,
S.
Périchon
,
B.
Remaki
, and
D.
Barbier
,
Sens. Actuators A
99
,
13
(
2002
).
7.
G.
Kaltsas
and
A. G.
Nassiopoulou
,
Sens. Actuators A
76
,
133
(
1999
).
8.
G.
Kastlas
,
A.
Nassiopoulos
, and
A.
Nassiopoulou
,
IEEE Sens. J.
2
(
5
),
463
475
(
2002
).
9.
E.
Hourdakis
and
A.
Nassiopoulou
,
Sensors
13
,
13596
13608
(
2013
).
10.
P.
Sarafis
and
A.
Nassiopoulou
,
Nanoscale Res. Lett.
9
,
418
(
2014
).
11.
G.
Benedetto
,
L.
Boarino
, and
R.
Spagnolo
,
Appl. Phys. A Mater. Sci. Process.
64
(
2
),
155
159
(
1997
).
12.
V.
Lysenko
,
S.
Périchon
,
B.
Remaki
,
D.
Barbier
, and
B.
Champagnon
,
J. Appl. Phys.
86
(
12
),
6841
(
1999
).
13.
S.
Périchon
,
V.
Lysenko
,
P.
Roussel
,
B.
Remaki
,
B.
Champagnon
,
D.
Barbier
, and
P.
Pinard
,
Sens. Actuators A Phys.
85
,
335
339
(
2000
).
14.
G.
Gesele
,
J.
Linsmeier
,
V.
Drach
,
J.
Fricke
, and
R.
Arens-Fischer
,
J. Phys. D Appl. Phys.
30
(
21
),
2911
(
1997
).
15.
C.
Populaire
,
B.
Remaki
,
V.
Lysenko
,
D.
Barbier
,
H.
Artmann
, and
T.
Pannek
,
Appl. Phys. Lett.
83
(
7
),
1370
(
2003
).
16.
S. P.
Duttagupta
,
X. L.
Chen
,
S. A.
Jenekhe
, and
P. M.
Fauchet
,
Solid State Commun.
101
(
1
),
33
37
(
1997
).
17.
D.
Bellet
,
P.
Lamagnère
,
A.
Vincent
, and
Y.
Bréchet
,
J. Appl. Phys.
80
(
7
),
3772
3776
(
1996
).
18.
S.
Fakiri
,
A.
Montagne
,
K.
Rahmoun
,
A.
Iost
, and
K.
Ziouche
,
Mater. Sci. Eng. A
711
,
470
475
(
2018
).
19.
P. J.
Newby
,
B.
Canut
,
J.-M.
Bluet
,
S.
Gomès
,
M.
Isaiev
,
R.
Burbelo
,
K.
Termentzidis
,
P.
Chantrenne
,
L. G.
Fréchette
, and
V.
Lysenko
,
J. Appl. Phys.
114
(
1
),
014903
(
2013
).
20.
M.
Isaiev
,
P. J.
Newby
,
B.
Canut
,
A.
Tytarenko
,
P.
Lishchuk
,
D.
Andrusenko
,
S.
Gomès
,
J.-M.
Bluet
,
L. G.
Fréchette
,
V.
Lysenko
, and
R.
Burbelo
,
Mater. Lett.
128
,
71
74
(
2014
).
21.
A.
Cruz-Orea
,
I.
Delgadillo
,
H.
Vargas
,
A.
Gudino-Martinez
,
E.
Marin
,
C.
Vazquez-Lopez
,
A.
Calderon
, and
J.J.
Alvarado-Gil
,
J. Appl. Phys.
79
(
12
),
8951
8954
(
1996
).
22.
S.
Gomès
,
P.
Newby
,
B.
Canut
,
K.
Termentzidis
,
O.
Marty
,
L.
Fréchette
,
P.
Chantrenne
,
V.
Aimez
,
J. M.
Bluet
, and
V.
Lysenko
,
Microelectron. J.
44
(
11
),
1029
1034
(
2013
).
23.
K.
Valalaki
and
A. G.
Nassiopoulou
,
J. Phys. D Appl. Phys.
50
,
195302
(
2017
).
24.
J. H.
Seol
,
D. S.
Barth
,
J.
Zhu
,
D.
Ćoso
,
K.
Hippalgaonkar
,
J.
Lim
,
J.
Han
,
X.
Zhang
, and
A.
Majumdar
,
Appl. Phys. Lett.
111
,
063104
(
2017
).
25.
I. H.
Campbell
and
P. M.
Fauchet
,
Solid State Commun.
58
(
10
),
739
741
(
1986
).
26.
M. N.
Islam
,
A.
Pradhan
, and
S.
Kumar
,
J. Appl. Phys.
98
(
2
),
024309
(
2005
).
27.
M.
Massoud
,
B.
Canut
,
P.
Newby
,
L.
Frechette
,
P. O.
Chapuis
, and
J. M.
Bluet
,
Nucl. Instrum. Methods Phys. Res. B
341
,
27
31
(
2014
).
28.
B.
Canut
,
M.
Massoud
,
P.
Newby
,
V.
Lysenko
,
L.
Frechette
,
J. M.
Bluet
, and
I.
Monnet
,
Nucl. Instrum. Methods Phys. Res. B
327
,
99
102
(
2014
).
29.
A.
Meftah
,
F.
Brisard
,
J. M.
Costantini
,
E.
Dooryhee
,
M.
Hage-Ali
,
M.
Hervieu
,
J. P.
Stoquert
,
F.
Studer
, and
M.
Toulemonde
,
Phys. Rev. B
49
(
18
),
12457
12463
(
1994
).
30.
C.
Trautmann
,
S.
Klaumünzer
, and
H.
Trinkaus
,
Phys. Rev. Lett.
85
(
17
),
3648
3651
(
2000
).
31.
D.
Kanjilal
,
Current Sci.
80
(
12
),
1560
1566
(
2001
), available at https://www.jstor.org/stable/24106293.
32.
Y.
Suzaki
and
A.
Tachibana
,
Appl. Opt.
14
,
2809
2810
(
1975
).
33.
T.
Hart
,
R.
Aggarwal
, and
B.
Lax
,
Phys. Rev. B
1
(
2
),
638
642
(
1970
).
34.
S.
Huang
,
X.-D.
Ruan
,
X.
Fu
, and
H.-Y.
Yang
,
J. Zhejiang Univ. Sci. A
10
(
1
),
7
16
(
2009
).
35.
C.
Populaire
, “
Propriétés physiques du silicium poreux: Traitements et applications aux microsystèmes
,”
Ph.D. dissertation
(
INSA Lyon
,
2005
).
36.
G.
Doerk
,
C.
Carraro
, and
R.
Maboudian
,
Phys. Rev. B
80
(
7
),
1
4
(
2009
).
37.
J.
von Behren
and
P. M.
Fauchet
, “
Chap. 8.2
,” in
Properties of Porous Silicon
, 1st ed., edited by
L.
Canham
(
The IEE
,
London
,
2006
), p.
405
.
38.
S.
Gomès
,
A.
Assy
, and
P.-O.
Chapuis
,
Phys. Status Solidi (a)
212
,
477
494
(
2015
).
39.
M.
Massoud
,
J. M.
Bluet
,
V.
Lacatena
,
M.
Haras
,
J.-F.
Robillard
, and
P.-O.
Chapuis
,
Appl. Phys. Lett.
111
,
063106
(
2017
).
40.
A. M.
Massoud
, “
Experimental characterization of heat transfer in nanostructured silicon-based materials
,”
Ph.D. dissertation, INSA-Lyon
(
2016
), available at http://theses.insa-lyon.fr/publication/2016LYSEI063/these.pdf.
41.
A.
Delan
,
M.
Rennau
,
S. E.
Schulz
, and
T.
Gessner
,
Microelectron. Eng.
70
(
2–4
),
280
284
(
2003
).
42.
M. G.
Burzo
,
P. L.
Komarov
, and
P. E.
Raad
,
IEEE Trans. Compon. Packag. Technol.
26
(
1
),
80
88
(
2003
).
43.
M. B.
Kleiner
,
S. A.
Kuhn
, and
W.
Weber
,
IEEE Trans. Electron Devices
43
(
9
),
1602
1609
(
1996
).
44.
Y. S.
Touloukian
,
R. W.
Powell
,
C. Y.
Ho
, and
P. G.
Klemens
, Thermophysical Properties of Matter, The TPRC Data Vol. 2 (IFI/Plenum, New York,
1971
).
45.
Y.
He
,
D.
Donadio
, and
G.
Galli
,
Appl. Phys. Lett.
98
(
14
),
144101
(
2011
).
46.
D.
Li
,
Y.
Wu
,
P.
Kim
,
L.
Shi
,
P.
Yang
, and
A.
Majumdar
,
Appl. Phys. Lett.
83
(
14
),
2934
2936
(
2003
).
47.
A.
Minnich
and
G.
Chen
,
Appl. Phys. Lett.
91
,
073105
(
2007
).
48.
R.
Yang
,
G.
Chen
, and
M.
Dresselhaus
,
Phys. Rev. B
72
,
125418
(
2005
).
49.
Z.
Tian
,
K.
Esfarjani
,
J.
Shiomi
,
A. S.
Henry
, and
G.
Chen
,
Appl. Phys. Lett.
99
,
053122
(
2011
).
50.
L. B.
Freund
and
S.
Suresh
,
Thin Film Materials
(
Cambridge University Press
,
2003
), p.
96
.
You do not currently have access to this content.