This work presents the development of a new photothermal radiometry (PTR) setup using a mix between frequency and spatial domain scans, along with a three-dimensional (3D) heat diffusion model. This newly developed PTR system, with a spatial resolution of 33 μm, is used to measure thermophysical properties of several kinds of materials. These properties include the thermal diffusivity, a, of homogeneous semi-infinite materials, thermal boundary resistance, Rth, and thermal anisotropy of membranes. The measured properties for homogeneous semi-infinite materials and two-layered systems are in good agreement with the literature values. In addition, it was possible to obtain an anisotropic factor of 24.6 between the in-plane and cross-plane thermal diffusivity of a 25 μm anisotropic flexible graphite sheet. Furthermore, it was also possible to measure, both directly and independently, the anisotropic thermal diffusivities for a 1 μm titanium membrane. It is suggested that this new hybrid technique can help us to fill the gap between conventional PTR and other photothermal and thermoreflectance techniques. Using this PTR setup, it is possible to experimentally measure isotropic and anisotropic thermophysical properties of bulk and thin materials, including membranes, with high precision through accurate characterization of the pump beam spots size. This is accomplished without the need for an optical transducer layer.

1.
J.
Schaumann
,
M.
Loor
,
D.
Ünal
,
A.
Mudring
,
S.
Heimann
,
U.
Hagemann
,
S.
Schulz
,
F.
Maculewicz
, and
G.
Schierning
,
Dalton Trans.
46
,
656
(
2017
).
2.
L. E.
Bell
,
Science
321
(
80
),
1457
(
2014
).
3.
S. M.
Lee
and
D. G.
Cahill
,
J. Appl. Phys.
81
,
2590
(
1997
).
4.
E. T.
Swartz
and
R. O.
Pohl
,
Rev. Mod. Phys.
61
,
605
(
1989
).
5.
P. L.
Kapitza
,
Phys. Rev.
60
,
354
(
1941
).
6.
D.
Zhao
,
X.
Qian
,
X.
Gu
,
S. A.
Jajja
, and
R.
Yang
,
J. Electron. Packag.
138
,
040802
(
2016
).
7.
J.
Yang
,
C.
Maragliano
, and
A. J.
Schmidt
,
Rev. Sci. Instrum.
84
,
104904
(
2013
).
8.
D. H.
Olson
,
J. L.
Braun
, and
P. E.
Hopkins
,
J. Appl. Phys.
126
,
150901
(
2019
).
9.
D. G.
Cahill
,
MRS Bull.
43
,
782
(
2018
).
10.
D. A.
Chernodoubov
and
A. V.
Inyushkin
,
Rev. Sci. Instrum.
90
,
024904
(
2019
).
11.
S.
Kommandur
and
S.
Yee
,
Rev. Sci. Instrum.
89
,
114905
(
2018
).
12.
M.
Chirtoc
,
J.
Bodzenta
, and
A. K.
Zmierczak-Bałata
,
Int. J. Heat Mass Transfer
156
,
119860
(
2020
).
13.
E.
Guen
,
P.
Klapetek
,
R.
Puttock
,
B.
Hay
,
A.
Allard
,
T.
Maxwell
,
P. O.
Chapuis
,
D.
Renahy
,
G.
Davee
,
M.
Valtr
,
J.
Martinek
,
O.
Kazakova
, and
S.
Gomès
,
Int. J. Therm. Sci.
156
,
106502
(
2020
).
14.
S.
Gomès
,
A.
Assy
, and
P. O.
Chapuis
,
Phys. Status Solidi
212
,
477
(
2015
).
15.
J.
Pelzl
,
P.
Kijamnajsuk
,
M.
Chirtoc
,
N.
Horny
, and
C.
Eisenmenger-Sittner
,
Int. J. Thermophys.
36
,
2475
(
2015
).
16.
M.
Chirtoc
,
N.
Horny
,
J. F.
Henry
,
A.
Turgut
,
I.
Kökey
,
I.
Tavman
, and
M.
Omastová
,
Int. J. Thermophys.
33
,
2110
(
2012
).
17.
K.
Ghosh
,
A.
Kusiak
,
P.
Noé
,
M.-C.
Cyrille
, and
J.-L.
Battaglia
,
Phys. Rev. B
101
,
214305
(
2020
).
18.
J. L.
Battaglia
,
E.
Ruffio
,
A.
Kusiak
,
C.
Pradere
,
E.
Abisset
,
S.
Chevalier
,
A.
Sommier
, and
J. C.
Batsale
,
Measurement
158
,
107691
(
2020
).
19.
Y.
Tada
,
M.
Harada
,
M.
Tanigaki
, and
W.
Eguchi
,
Rev. Sci. Instrum.
49
,
1305
(
1978
).
20.
W.
Nunes Dos Santos
,
P.
Mummery
, and
A.
Wallwork
,
Polym. Test.
24
,
628
(
2005
).
21.
M. J.
Assael
,
C. F.
Chen
,
I.
Metaxa
, and
W. A.
Wakeham
,
Int. J. Thermophys.
25
,
971
(
2004
).
22.
J. U.
Lee
,
D.
Yoon
,
H.
Kim
,
S. W.
Lee
, and
H.
Cheong
,
Phys. Rev. B
83
,
081419
(
2011
).
23.
T.
Kobari
,
J.
Okajima
,
A.
Komiya
, and
S.
Maruyama
,
Int. J. Heat Mass Transfer
91
,
1157
(
2015
).
24.
P.
Eriksson
,
J. Y.
Andersson
, and
G.
Stemme
,
J. Microelectromech. Syst.
6
,
55
(
1997
).
25.
X.
Zhang
and
C. P.
Grigoropoulos
,
Rev. Sci. Instrum.
66
,
1115
(
1995
).
26.
B. L.
Zink
and
F.
Hellman
,
Solid State Commun.
129
,
199
(
2004
).
27.
J. A.
Johnson
,
A. A.
Maznev
,
J.
Cuffe
,
J. K.
Eliason
,
A. J.
Minnich
,
T.
Kehoe
,
C. M. S.
Torres
,
G.
Chen
, and
K. A.
Nelson
,
Phys. Rev. Lett.
110
,
025901
(
2013
).
28.
T.
Kemp
,
T. A. S.
Srinivas
,
R.
Fettig
, and
W.
Ruppel
,
Rev. Sci. Instrum.
66
,
176
(
1995
).
29.
C.
Faugeras
,
B.
Faugeras
,
M.
Orlita
,
M.
Potemski
,
R. R.
Nair
, and
A. K.
Geim
,
ACS Nano
4
,
1889
(
2010
).
30.
B.
Zhang
and
R. E.
Imhof
,
Appl. Phys. A Mater. Sci. Process.
62
,
323
(
1996
).
31.
C.
Frétigny
,
J. P.
Roger
,
V.
Reita
, and
D.
Fournier
,
J. Appl. Phys.
102
,
116104
(
2007
).
32.
C.
Frétigny
,
J. Y.
Duquesne
,
D.
Fournier
, and
F.
Xu
,
J. Appl. Phys.
111
,
084313
(
2012
).
33.
D. G.
Cahill
,
Rev. Sci. Instrum.
75
,
5119
(
2004
).
34.
J.
Hartmann
,
P.
Voigt
, and
M.
Reichling
,
J. Appl. Phys.
81
,
2966
(
1997
).
35.
W. S.
Capinski
,
H. J.
Maris
,
M. C. T.
Ruf
,
K.
Ploog
, and
D. S.
Katzer
,
Phys. Rev. B
59
,
8105
(
1999
).
36.
A. J.
Schmidt
,
X.
Chen
, and
G.
Chen
,
Rev. Sci. Instrum.
79
,
114902
(
2008
).
37.
M.
Khafizov
and
D. H.
Hurley
,
J. Appl. Phys.
110
,
083525
(
2011
).
38.
Z.
Hua
,
H.
Ban
,
M.
Khafizov
,
R.
Schley
,
R.
Kennedy
, and
D. H.
Hurley
,
J. Appl. Phys.
111
,
103505
(
2012
).
39.
L.
David
,
S.
Gomès
,
G.
Carlot
,
J. P.
Roger
,
D.
Fournier
,
C.
Valot
, and
M.
Raynaud
,
J. Phys. D Appl. Phys.
41
,
035502
(
2008
).
40.
L.
Wang
,
R.
Cheaito
,
J. L.
Braun
,
A.
Giri
, and
P. E.
Hopkins
,
Rev. Sci. Instrum.
87
,
094902
(
2016
).
41.
L.
Fabbri
and
P.
Fenici
,
Rev. Sci. Instrum.
66
,
3593
(
1995
).
42.
J.-L.
Battaglia
,
C.
Chassain
, and
E.
Ruffio
,
J. Appl. Phys.
127
,
245110
(
2020
).
43.
C.
Wang
,
A.
Mandelis
,
H.
Qu
, and
Z.
Chen
,
J. Appl. Phys.
103
,
043510
(
2008
).
44.
S.
Huxtable
,
D. G.
Cahill
,
V.
Fauconnier
,
J. O.
White
, and
J. C.
Zhao
,
Nat. Mater.
3
,
298
(
2004
).
45.
A.
Mandelis
, in
International Society for Optics and Photonics Thermosense XXIV
(
SPIE
,
2002
), pp.
373
383
.
46.
C.
Jensen
,
M.
Chirtoc
,
N.
Horny
,
J. S.
Antoniow
,
H.
Pron
, and
H.
Ban
,
J. Appl. Phys.
114
,
133509
(
2013
).
47.
M. E.
Rodriguez
,
A.
Mandelis
,
G.
Pan
,
J. A.
Garcia
, and
Y.
Riopel
,
Solid State Electron.
44
,
703
(
2000
).
48.
J. L. N.
Fotsing
,
B. K.
Bein
, and
J.
Pelzl
,
Superlattices Microstruct.
35
,
419
(
2004
).
49.
T.
Evgin
,
H. D.
Koca
,
N.
Horny
,
A.
Turgut
,
I. H.
Tavman
,
M.
Chirtoc
,
M.
Omastová
, and
I.
Novak
,
Composites Part A
82
,
208
(
2016
).
50.
T.
Evgin
,
A.
Turgut
,
G.
Hamaoui
,
Z.
Spitalsky
,
N.
Horny
,
M.
Micusik
,
M.
Chirtoc
,
M.
Sarikanat
, and
M.
Omastova
,
Beilstein J. Nanotechnol.
11
,
167
(
2020
).
51.
F.
Reisdorffer
,
B.
Garnier
,
N.
Horny
,
C.
Renaud
,
M.
Chirtoc
, and
T.-P.
Nguyen
,
EPJ Web Conf.
79
,
02001
(
2014
).
52.
D.
Trefon-Radziejewska
,
G.
Hamaoui
,
M.
Chirtoc
,
N.
Horny
,
V.
Smokal
,
A.
Biitseva
,
O.
Krupka
, and
B.
Derkowska-Zielinska
,
Mater. Chem. Phys.
223
,
700
(
2019
).
53.
A.
Prosvetov
,
G.
Hamaoui
,
N.
Horny
,
M.
Chirtoc
,
F.
Yang
,
C.
Trautmann
, and
M.
Tomut
,
Acta Mater.
184
,
187
(
2020
).
54.
G.
Hamaoui
,
N.
Horny
,
Z.
Hua
,
T.
Zhu
,
J.-F.
Robillard
,
A.
Fleming
,
H.
Ban
, and
M.
Chirtoc
,
Sci. Rep.
8
,
11352
(
2018
).
55.
N.
Horny
,
M.
Chirtoc
,
A.
Fleming
,
G.
Hamaoui
, and
H.
Ban
,
Appl. Phys. Lett.
109
,
033103
(
2016
).
56.
G.
Hamaoui
,
N.
Horny
,
C. L.
Gomez-heredia
,
J. A.
Ramirez-rincon
,
J.
Ordonez-miranda
,
C.
Champeaux
,
F.
Dumas-bouchiat
,
J. J.
Alvarado-gil
,
Y.
Ezzahri
,
K.
Joulain
, and
M.
Chirtoc
,
Sci. Rep.
9
,
8728
(
2019
).
57.
G.
Hamaoui
,
R.
Dagher
,
Y.
Cordier
,
A.
Michon
,
S.
Potiron
,
M.
Chirtoc
, and
N.
Horny
,
Appl. Phys. Lett.
114
,
221601
(
2019
).
58.
P. M.
Almond
and
D. P.
Patel
,
Photothermal Science and Techniques
(
Springer
,
1996
).
59.
B.
Sun
and
Y. K.
Koh
,
Rev. Sci. Instrum.
87
,
064901
(
2016
).
60.
H. G.
Walther
,
Appl. Surf. Sci.
193
,
156
(
2002
).
61.
K.
Technologies
, Series KMPV HgCdTe Photodetectors, http://www.kolmartech.com/kld_ser.htm (last accessed October 24, 2020).
62.
P.
Grossel
and
F.
Depasse
,
J. Phys. D Appl. Phys.
31
,
216
(
1998
).
63.
M.
Chirtoc
, in
Thermal Wave Physics and Related Photothermal Techniques: Basic Principles and Recent Developments
, edited by
E.
Marin
(
Transworld Research Network
,
2009
), p.
29
.
64.
Y. C. L. C. Y.
Chunyan
and
X.
Guogang
,
Appl. Laser
6
,
1
(
2014
).
65.
G.
Hamaoui
, “Multiscale thermophysical characterization using broad frequency range photothermal radiometry,” Ph.D. thesis (Reims Champagne-Ardenne, 2018).
66.
A.
Mandelis
,
Diffusion-Wave Fields: Mathematical Methods and Green Functions
(
Springer Science & Business Media
,
2001
).
67.
P. E.
Hopkins
,
ISRN Mech. Eng.
2013
,
1
(
2013
).
68.
L.
Qian
,
J.
Mei
,
J.
Liang
, and
X.
Wu
,
Mater. Sci. Technol.
21
,
597
(
2005
).
69.
P.
Peyre
,
P.
Aubry
,
R.
Fabbro
,
R.
Neveu
, and
A.
Longuet
,
J. Phys. D Appl. Phys.
41
,
025403
(
2008
).
70.
J. S.
Agapiou
and
M. F.
DeVries
,
J. Heat Transfer
111
,
281
(
1989
).
71.
M. J.
Assael
and
K.
Gialou
,
Int. J. Thermophys.
24
,
1145
(
2003
).
72.
T.
Yamane
,
N.
Nagai
,
S. I.
Katayama
, and
M.
Todoki
,
J. Appl. Phys.
91
,
9772
(
2002
).
73.
D. G.
Cahill
,
Rev. Sci. Instrum.
61
,
802
(
1990
).
74.
H. R.
Shanks
,
P. D.
Maycock
,
P. H.
Sidles
, and
G. C.
Danielson
,
Phys. Rev.
130
,
1743
(
1963
).
75.
R.
Hull
,
Properties of Crystalline Silicon
(
The Institution of Electrical Engineers
,
VA
,
1999
).
76.
J.
Xiang
and
L. T.
Drzal
,
Carbon
49
,
773
(
2011
).
77.
R.
Liu
,
J.
Chen
,
M.
Tan
,
S.
Song
,
Y.
Chen
, and
D.
Fu
, in
ICMREE International Conference on Materials for Renewable Energy Environment
(
IEEE
,
2013
), Vol. 1, p. 107.
78.
B.
Shen
,
W.
Zhai
, and
W.
Zheng
,
Adv. Funct. Mater.
24
,
4542
(
2014
).
79.
X. H.
Wei
,
L.
Liu
,
J. X.
Zhang
,
J. L.
Shi
, and
Q. G.
Guo
,
J. Mater. Sci.
45
,
2449
(
2010
).
80.
Y. S.
Touloukian
,
R. K.
Kirby
,
R. E.
Taylor
, and
P. D.
Desai
, Thermophysical Properties of Matter, The TPRC Data Series (
TPR Data Ser.
,
1975
), p.
1595
.
81.
C. Y.
Ho
,
R. W.
Powell
, and
P. E.
Liley
,
J. Phys. Chem. Ref. Data
1
,
279
(
1972
).
82.
Goodfellow, Titanium foil data sheet, http://www.goodfellow.com/catalogue/GFCat4J.php (last accessed August 4, 2020).
83.
K. T.
Regner
,
J. P.
Freedman
, and
J. A.
Malen
,
Nanoscale Microscale Thermophys. Eng.
19
,
183
(
2015
).
84.
U.
Seidel
,
K.
Haupt
,
H. G.
Walther
,
J. A.
Burt
, and
M.
Munidasa
,
J. Appl. Phys.
78
,
2050
(
1995
).

Supplementary Material

You do not currently have access to this content.