Intense current pulses are often required to operate microelectronic and spintronic devices. Notably, strong current pulses have been shown to induce magnetoresistance changes attributed to domain reorientation in antiferromagnet/heavy metal bilayers and non-centrosymmetric antiferromagnets. In such cases, nonmagnetic resistivity changes may dominate over signatures of antiferromagnetic switching. We report systematic measurements of the current-induced changes of the transverse and longitudinal resistance of Pt and Pt/NiO layers deposited on insulating substrates, namely, Si/SiO2, Si/Si3N4, and Al2O3. We identify the range of pulse amplitude and length that can be used without affecting the resistance and show that it increases with the device size and thermal diffusivity of the substrate. No significant difference is observed in the resistive response of Pt and NiO/Pt devices, thus precluding evidence on the switching of antiferromagnetic domains in NiO. The variation of the transverse resistance is associated to a thermally activated process in Pt that decays following a double exponential law with characteristic timescales of a few minutes to hours. We use a Wheatstone bridge model to discriminate between positive and negative resistance changes, highlighting competing annealing and electromigration effects. Depending on the training of the devices, the transverse resistance can either increase or decrease between current pulses. Furthermore, we elucidate the origin of the nonmonotonic resistance baseline, which we attribute to training effects combined with the asymmetric distribution of the current. These results provide insight into the origin of current-induced resistance changes in metal layers and a guide to minimize nonmagnetic artifacts in switching experiments of antiferromagnets.

1.
K.
Olejník
,
V.
Schuler
,
X.
Marti
,
V.
Novák
,
Z.
Kašpar
,
P.
Wadley
,
R. P.
Campion
,
K. W.
Edmonds
,
B. L.
Gallagher
,
J.
Garces
,
M.
Baumgartner
,
P.
Gambardella
, and
T.
Jungwirth
, “
Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility
,”
Nat. Commun.
8
,
15434
(
2017
).
2.
T.
Jungwirth
,
X.
Marti
,
P.
Wadley
, and
J.
Wunderlich
, “
Antiferromagnetic spintronics
,”
Nat. Nanotechnol.
11
,
231
241
(
2016
).
3.
F.
Keffer
and
C.
Kittel
, “
Theory of antiferromagnetic resonance
,”
Phys. Rev.
85
,
329
337
(
1952
).
4.
M.
Fiebig
,
N. P.
Duong
,
T.
Satoh
,
B. B.
Van Aken
,
K.
Miyano
,
Y.
Tomioka
, and
Y.
Tokura
, “
Ultrafast magnetization dynamics of antiferromagnetic compounds
,”
J. Phys. D Appl. Phys.
41
,
164005
(
2008
).
5.
V.
Baltz
,
A.
Manchon
,
M.
Tsoi
,
T.
Moriyama
,
T.
Ono
, and
Y.
Tserkovnyak
, “
Antiferromagnetic spintronics
,”
Rev. Mod. Phys.
90
,
015005
(
2018
).
6.
K.
Olejník
,
T.
Seifert
,
Z.
Kašpar
,
V.
Novák
,
P.
Wadley
,
R. P.
Campion
,
M.
Baumgartner
,
P.
Gambardella
,
P.
Němec
,
J.
Wunderlich
,
J.
Sinova
,
P.
Kužel
,
M.
Müller
,
T.
Kampfrath
, and
T.
Jungwirth
, “
Terahertz electrical writing speed in an antiferromagnetic memory
,”
Sci. Adv.
4
,
eaar3566
(
2018
).
7.
P.
Wadley
,
B.
Howells
,
J.
Elezny
,
C.
Andrews
,
V.
Hills
,
R. P.
Campion
,
V.
Novak
,
K.
Olejnik
,
F.
Maccherozzi
,
S. S.
Dhesi
,
S. Y.
Martin
,
T.
Wagner
,
J.
Wunderlich
,
F.
Freimuth
,
Y.
Mokrousov
,
J.
Kune
,
J. S.
Chauhan
,
M. J.
Grzybowski
,
A. W.
Rushforth
,
K. W.
Edmonds
,
B. L.
Gallagher
, and
T.
Jungwirth
, “
Electrical switching of an antiferromagnet
,”
Science
351
,
587
590
(
2016
).
8.
P.
Wadley
,
S.
Reimers
,
M. J.
Grzybowski
,
C.
Andrews
,
M.
Wang
,
J. S.
Chauhan
,
B. L.
Gallagher
,
R. P.
Campion
,
K. W.
Edmonds
,
S. S.
Dhesi
,
F.
Maccherozzi
,
V.
Novak
,
J.
Wunderlich
, and
T.
Jungwirth
, “
Current polarity-dependent manipulation of antiferromagnetic domains
,”
Nat. Nanotechnol.
13
,
362
365
(
2018
).
9.
X. F.
Zhou
,
J.
Zhang
,
F.
Li
,
X. Z.
Chen
,
G. Y.
Shi
,
Y. Z.
Tan
,
Y. D.
Gu
,
M. S.
Saleem
,
H. Q.
Wu
,
F.
Pan
, and
C.
Song
, “
Strong orientation-dependent spin–orbit torque in thin films of the antiferromagnet Mn2Au
,”
Phys. Rev. Appl.
9
,
054028
(
2018
).
10.
M.
Meinert
,
D.
Graulich
, and
T.
Matalla-Wagner
, “
Electrical switching of antiferromagnetic Mn2Au and the role of thermal activation
,”
Phys. Rev. Appl.
9
,
064040
(
2018
).
11.
S. Y.
Bodnar
,
L.
Šmejkal
,
I.
Turek
,
T.
Jungwirth
,
O.
Gomonay
,
J.
Sinova
,
A. A.
Sapozhnik
,
H.-J.
Elmers
,
M.
Kläui
, and
M.
Jourdan
, “
Writing and reading antiferromagnetic Mn2Au by Néel spin–orbit torques and large anisotropic magnetoresistance
,”
Nat. Commun.
9
,
348
(
2018
).
12.
X.
Chen
,
X.
Zhou
,
R.
Cheng
,
C.
Song
,
J.
Zhang
,
Y.
Wu
,
Y.
Ba
,
H.
Li
,
Y.
Sun
,
Y.
You
,
Y.
Zhao
, and
F.
Pan
, “
Electric field control of Néel spin–orbit torque in an antiferromagnet
,”
Nat. Mater.
18
,
931
935
(
2019
).
13.
N. L.
Nair
,
E.
Maniv
,
C.
John
,
S.
Doyle
,
J.
Orenstein
, and
J. G.
Analytis
, “
Electrical switching in a magnetically intercalated transition metal dichalcogenide
,”
Nat. Mater.
19
,
153
157
(
2020
).
14.
M.
Dunz
,
T.
Matalla-Wagner
, and
M.
Meinert
, “
Spin–orbit torque induced electrical switching of antiferromagnetic MnN
,”
Phys. Rev. Res.
2
,
013347
(
2020
).
15.
K. A.
Omari
,
L. X.
Barton
,
O.
Amin
,
R. P.
Campion
,
A. W.
Rushforth
,
A. J.
Kent
,
P.
Wadley
, and
K. W.
Edmonds
, “
Low-energy switching of antiferromagnetic CuMnAs/GaP using sub-10 nanosecond current pulses
,”
J. Appl. Phys.
127
,
193906
(
2020
).
16.
H.
Tsai
,
T.
Higo
,
K.
Kondou
,
T.
Nomoto
,
A.
Sakai
,
A.
Kobayashi
,
T.
Nakano
,
K.
Yakushiji
,
R.
Arita
,
S.
Miwa
,
Y.
Otani
, and
S.
Nakatsuji
, “
Electrical manipulation of a topological antiferromagnetic state
,”
Nature
580
,
608
613
(
2020
).
17.
T.
Moriyama
,
K.
Oda
,
T.
Ohkochi
,
M.
Kimata
, and
T.
Ono
, “
Spin torque control of antiferromagnetic moments in NiO
,”
Sci. Rep.
8
,
14167
(
2018
).
18.
X. Z.
Chen
,
R.
Zarzuela
,
J.
Zhang
,
C.
Song
,
X. F.
Zhou
,
G. Y.
Shi
,
F.
Li
,
H. A.
Zhou
,
W. J.
Jiang
,
F.
Pan
, and
Y.
Tserkovnyak
, “
Antidamping-torque-induced switching in biaxial antiferromagnetic insulators
,”
Phys. Rev. Lett.
120
,
207204
(
2018
).
19.
L.
Baldrati
,
O.
Gomonay
,
A.
Ross
,
M.
Filianina
,
R.
Lebrun
,
R.
Ramos
,
C.
Leveille
,
F.
Fuhrmann
,
T. R.
Forrest
,
F.
Maccherozzi
,
S.
Valencia
,
F.
Kronast
,
E.
Saitoh
,
J.
Sinova
, and
M.
Kläui
, “
Mechanism of Néel order switching in antiferromagnetic thin films revealed by magnetotransport and direct imaging
,”
Phys. Rev. Lett.
123
,
177201
(
2019
).
20.
I.
Gray
,
T.
Moriyama
,
N.
Sivadas
,
G. M.
Stiehl
,
J. T.
Heron
,
R.
Need
,
B. J.
Kirby
,
D. H.
Low
,
K. C.
Nowack
,
D. G.
Schlom
,
D. C.
Ralph
,
T.
Ono
, and
G. D.
Fuchs
, “
Spin seebeck imaging of spin-torque switching in antiferromagnetic Pt/NiO heterostructures
,”
Phys. Rev. X
9
,
041016
(
2019
).
21.
P.
Zhang
,
J.
Finley
,
T.
Safi
, and
L.
Liu
, “
Quantitative study on current-induced effect in an antiferromagnet insulator/Pt bilayer film
,”
Phys. Rev. Lett.
123
,
247206
(
2019
).
22.
Y.
Cheng
,
S.
Yu
,
M.
Zhu
,
J.
Hwang
, and
F.
Yang
, “
Electrical switching of tristate antiferromagnetic Néel order in alpha-Fe2O3 epitaxial films
,”
Phys. Rev. Lett.
124
,
027202
(
2020
).
23.
A.
Manchon
,
J.
Železný
,
I. M.
Miron
,
T.
Jungwirth
,
J.
Sinova
,
A.
Thiaville
,
K.
Garello
, and
P.
Gambardella
, “
Current-induced spin–orbit torques in ferromagnetic and antiferromagnetic systems
,”
Rev. Mod. Phys.
91
,
035004
(
2019
).
24.
M. S.
Wörnle
,
P.
Welter
,
Z.
Kašpar
,
K.
Olejník
,
V.
Novák
,
R. P.
Campion
,
P.
Wadley
,
T.
Jungwirth
,
C. L.
Degen
, and
P.
Gambardella
, “Current-induced fragmentation of antiferromagnetic domains,” arXiv:1912.05287 (2019), pp. 1–21.
25.
U.
Schmid
and
H.
Seidel
, “
Effect of high temperature annealing on the electrical performance of titanium/platinum thin films
,”
Thin Solid Films
516
,
898
906
(
2008
).
26.
P. S.
Ho
and
T.
Kwok
, “
Electromigration in metals
,”
Rep. Prog. Phys.
52
,
301
348
(
1989
).
27.
F.
Schreiber
,
L.
Baldrati
,
C.
Schmitt
,
R.
Ramos
,
E.
Saitoh
,
R.
Lebrun
, and
M.
Kläui
, “
Concurrent magneto-optical imaging and magneto-transport readout of electrical switching of insulating antiferromagnetic thin films
,”
Appl. Phys. Lett.
117
,
082401
(
2020
).
28.
C. C.
Chiang
,
S. Y.
Huang
,
D.
Qu
,
P. H.
Wu
, and
C. L.
Chien
, “
Absence of evidence of electrical switching of the antiferromagnetic Néel vector
,”
Phys. Rev. Lett.
123
,
227203
(
2019
).
29.
T.
Matalla-Wagner
,
J.-M.
Schmalhorst
,
G.
Reiss
,
N.
Tamura
, and
M.
Meinert
, “Resistive contribution in electrical switching experiments with antiferromagnets,” arXiv:1910.08576 (2019), pp. 1–9.
30.
A.
Churikova
,
D.
Bono
,
B.
Neltner
,
A.
Wittmann
,
L.
Scipioni
,
A.
Shepard
,
T.
Newhouse-Illige
,
J.
Greer
, and
G. S. D.
Beach
, “
Non-magnetic origin of spin Hall magnetoresistance-like signals in Pt films and epitaxial NiO/Pt bilayers
,”
Appl. Phys. Lett.
116
,
022410
(
2020
).
31.
X.
Zhou
,
X.
Chen
,
J.
Zhang
,
F.
Li
,
G.
Shi
,
Y.
Sun
,
M.
Saleem
,
Y.
You
,
F.
Pan
, and
C.
Song
, “
From fieldlike torque to antidamping torque in antiferromagnetic Mn2Au
,”
Phys. Rev. Appl.
11
,
054030
(
2019
).
32.
J.
Shi
,
V.
Lopez-Dominguez
,
F.
Garesci
,
C.
Wang
,
H.
Almasi
,
M.
Grayson
,
G.
Finocchio
, and
P.
Khalili Amiri
, “
Electrical manipulation of the magnetic order in antiferromagnetic PtMn pillars
,”
Nat. Electron.
3
,
92
98
(
2020
).
33.
T.
Moriyama
,
W.
Zhou
,
T.
Seki
,
K.
Takanashi
, and
T.
Ono
, “
Spin–orbit-torque memory operation of synthetic antiferromagnets
,”
Phys. Rev. Lett.
121
,
167202
(
2018
).
34.
J.
Zelezny
,
H.
Gao
,
K.
Vyborny
,
J.
Zemen
,
J.
Masek
,
A.
Manchon
,
J.
Wunderlich
,
J.
Sinova
, and
T.
Jungwirth
, “
Relativistic Neel-order fields induced by electrical current in antiferromagnets
,”
Phys. Rev. Lett.
113
,
157201
(
2014
).
35.
I. M.
Miron
,
K.
Garello
,
G.
Gaudin
,
P.-J.
Zermatten
,
M. V.
Costache
,
S.
Auffret
,
S.
Bandiera
,
B.
Rodmacq
,
A.
Schuhl
, and
P.
Gambardella
, “
Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection
,”
Nature
476
,
189
193
(
2011
).
36.
C. O.
Avci
,
A.
Quindeau
,
C.-F.
Pai
,
M.
Mann
,
L.
Caretta
,
A. S.
Tang
,
M. C.
Onbasli
,
C. A.
Ross
, and
G. S. D.
Beach
, “
Current-induced switching in a magnetic insulator
,”
Nat. Mater.
16
,
309
314
(
2017
).
37.
E. G.
Tveten
,
A.
Qaiumzadeh
, and
A.
Brataas
, “
Antiferromagnetic domain wall motion induced by spin waves
,”
Phys. Rev. Lett.
112
,
147204
(
2014
).
38.
T.
Shiino
,
S.-H.
Oh
,
P. M.
Haney
,
S.-W.
Lee
,
G.
Go
,
B.-G.
Park
, and
K.-J.
Lee
, “
Antiferromagnetic domain wall motion driven by spin–orbit torques
,”
Phys. Rev. Lett.
117
,
087203
(
2016
).
39.
H.
Meer
,
F.
Schreiber
,
C.
Schmitt
,
R.
Ramos
,
E.
Saitoh
,
O.
Gomonay
,
J.
Sinova
,
L.
Baldrati
, and
M.
Kläui
, “Direct imaging of current-induced antiferromagnetic switching revealing a pure thermomagnetoelastic switching mechanism,” arXiv:2008.05219 (2020).
40.
A. S.
Núñez
,
R. A.
Duine
,
P.
Haney
, and
A. H.
MacDonald
, “
Theory of spin torques and giant magnetoresistance in antiferromagnetic metals
,”
Phys. Rev. B
73
,
214426
(
2006
).
41.
Y.-T.
Chen
,
S.
Takahashi
,
H.
Nakayama
,
M.
Althammer
,
S. T. B.
Goennenwein
,
E.
Saitoh
, and
G. E. W.
Bauer
, “
Theory of spin Hall magnetoresistance
,”
Phys. Rev. B
87
,
144411
(
2013
).
42.
D.
Hou
,
Z.
Qiu
,
J.
Barker
,
K.
Sato
,
K.
Yamamoto
,
S.
Vélez
,
J. M.
Gomez-Perez
,
L. E.
Hueso
,
F.
Casanova
, and
E.
Saitoh
, “
Tunable sign change of spin Hall magnetoresistance in Pt/NiO/YIG structures
,”
Phys. Rev. Lett.
118
,
147202
(
2017
).
43.
J.
Fischer
,
O.
Gomonay
,
R.
Schlitz
,
K.
Ganzhorn
,
N.
Vlietstra
,
M.
Althammer
,
H.
Huebl
,
M.
Opel
,
R.
Gross
,
S. T. B.
Goennenwein
, and
S.
Geprägs
, “
Spin Hall magnetoresistance in antiferromagnet/heavy-metal heterostructures
,”
Phys. Rev. B
97
,
014417
(
2018
).
44.
L.
Baldrati
,
A.
Ross
,
T.
Niizeki
,
C.
Schneider
,
R.
Ramos
,
J.
Cramer
,
O.
Gomonay
,
M.
Filianina
,
T.
Savchenko
,
D.
Heinze
,
A.
Kleibert
,
E.
Saitoh
,
J.
Sinova
, and
M.
Kläui
, “
Full angular dependence of the spin Hall and ordinary magnetoresistance in epitaxial antiferromagnetic NiO(001)/Pt thin films
,”
Phys. Rev. B
98
,
024422
(
2018
).
45.
F. B.
Hagedorn
and
P. M.
Hall
, “
Right–angle bends in thin strip conductors
,”
J. Appl. Phys.
34
,
128
133
(
1963
).
46.
C.
Stamm
,
C.
Murer
,
M.
Berritta
,
J.
Feng
,
M.
Gabureac
,
P. M.
Oppeneer
, and
P.
Gambardella
, “
Magneto-optical detection of the spin hall effect in Pt and W thin films
,”
Phys. Rev. Lett.
119
,
087203
(
2017
).
47.
J.
Agustsson
,
U.
Arnalds
,
A.
Ingason
,
K.
Gylfason
,
K.
Johnsen
,
S.
Olafsson
, and
J.
Gudmundsson
, “
Growth, coalescence, and electrical resistivity of thin Pt films grown by DC magnetron sputtering on SiO2
,”
Appl. Surf. Sci.
254
,
7356
7360
(
2008
).
48.
U.
Schmid
, “
The impact of thermal annealing and adhesion film thickness on the resistivity and the agglomeration behavior of titanium/platinum thin films
,”
J. Appl. Phys.
103
,
054902
(
2008
).
49.
L.
Xiao
,
Z.
Zhao
,
L.
Du
,
S.
Wu
, and
Q.
Liu
, “Annealing effect on the stability of platinum thin films covered by SiO2 or SiNx layer,” in IEEE International Conference Nano/Micro Engineered and Molecular Systems (IEEE, 2013), Vol. 1, pp. 352–355.
50.
C.-Y.
You
,
I. M.
Sung
, and
B.-K.
Joe
, “
Analytic expression for the temperature of the current-heated nanowire for the current-induced domain wall motion
,”
Appl. Phys. Lett.
89
,
222513
(
2006
).
51.
A.
Yamaguchi
,
S.
Nasu
,
H.
Tanigawa
,
T.
Ono
,
K.
Miyake
,
K.
Mibu
, and
T.
Shinjo
, “
Effect of Joule heating in current-driven domain wall motion
,”
Appl. Phys. Lett.
86
,
012511
(
2005
).
52.
P.
Luo
,
Z.
Lu
,
Z. G.
Zhu
,
Y. Z.
Li
,
H. Y.
Bai
, and
W. H.
Wang
, “
Prominent β-relaxations in yttrium based metallic glasses
,”
Appl. Phys. Lett.
106
,
031907
(
2015
).
53.
P.
Luo
,
P.
Wen
,
H. Y.
Bai
,
B.
Ruta
, and
W. H.
Wang
, “
Relaxation decoupling in metallic glasses at low temperatures
,”
Phys. Rev. Lett.
118
,
225901
(
2017
).
54.
S.-M.
Lee
and
D. G.
Cahill
, “
Heat transport in thin dielectric films
,”
J. Appl. Phys.
81
,
2590
2595
(
1997
).
55.
Substrate Provided by MTI-Corporation
, “Al2O3 single crystal sapphire boule and polished wafer” (2019), avaialbe at https://www.mtixtl.com/xtlflyers/Al2O3.pdf.
56.
N.
Stojanovic
,
J.
Yun
,
J. M.
Berg
,
M.
Holtz
, and
H.
Temkin
, “
Model-based data analysis for thin-film thermal conductivity measurement using microelectrothermal test structures
,”
ASME Int. Mech. Eng. Congr. Exposition Proc.
11
,
639
645
(
2007
).
57.
A. J.
Griffin
,
F. R.
Brotzen
, and
P. J.
Loos
, “
The effective transverse thermal conductivity of amorphous Si3N4 thin films
,”
J. Appl. Phys.
76
,
4007
4011
(
1994
).
You do not currently have access to this content.