In this paper, we describe how it is possible to harness the photo-thermal effects occurring in metallic nanoparticles to develop molecular sensors. In particular, we numerically demonstrate how a change of the surrounding medium affects the localized surface plasmon resonance with a consequent shift of the corresponding resonance wavelength, enabling the detection of analytes on metal nanospheres. At the same time, the photothermal response of the nanostructures is modified because of the shift of the plasmonic resonance due to the variation of the refractive index of the host medium. By monitoring the photothermal response, it is possible to quantify the concentration of the analytes binding at the metal nanoparticle surface.
REFERENCES
1.
2.
G.
Baffou
and R.
Quidant
, “Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat
,” Laser Photonics Rev.
7
, 171
–187
(2013
). 3.
C.
Girard
, P.
Wiecha
, A.
Cuche
, and E.
Dujardin
, “Designing thermoplasmonic properties of metallic metasurfaces
,” J. Opt.
20
, 075004
(2018
). 4.
E.
Hutter
and J. H.
Fendler
, “Exploitation of localized surface plasmon resonance
,” Adv. Mater.
16
, 1685
–1706
(2004
). 5.
S. A.
Maier
, Plasmonics: Fundamentals and Applications
(Springer Science & Business Media
, 2007
).6.
G. E.
Lio
, A.
Ferraro
, M.
Giocondo
, R.
Caputo
, and A.
De Luca
, “Color gamut behavior in epsilon near-zero nanocavities during propagation of gap surface plasmons
,” Adv. Opt. Mater.
8
(17), 2000487
(2020
). 7.
G. E.
Lio
, J. B.
Madrigal
, X.
Xu
, Y.
Peng
, S.
Pierini
, C.
Couteau
, S.
Jradi
, R.
Bachelot
, R.
Caputo
, and S.
Blaize
, “Integration of nanoemitters onto photonic structures by guided evanescent-wave nano-photopolymerization
,” J. Phys. Chem. C
123
, 14669
–14676
(2019
). 8.
A. O.
Govorov
, W.
Zhang
, T.
Skeini
, H.
Richardson
, J.
Lee
, and N. A.
Kotov
, “Gold nanoparticle ensembles as heaters and actuators: Melting and collective plasmon resonances
,” Nanoscale Res. Lett.
1
, 84
(2006
). 9.
H. H.
Richardson
, Z. N.
Hickman
, A. O.
Govorov
, A. C.
Thomas
, W.
Zhang
, and M. E.
Kordesch
, “Thermooptical properties of gold nanoparticles embedded in ice: Characterization of heat generation and melting
,” Nano Lett.
6
, 783
–788
(2006
). 10.
G.
Baffou
, P.
Berto
, E.
Bermúdez Ureña
, R.
Quidant
, S.
Monneret
, J.
Polleux
, and H.
Rigneault
, “Photoinduced heating of nanoparticle arrays
,” ACS Nano
7
, 6478
–6488
(2013
). 11.
L.
Pezzi
, G.
Palermo
, A.
Veltri
, U.
Cataldi
, T.
Bürgi
, T.
Ritacco
, M.
Giocondo
, C.
Umeton
, and A.
De Luca
, “Photo-thermal study of a layer of randomly distributed gold nanoparticles: From nano-localization to macro-scale effects
,” J. Phys. D Appl. Phys.
50
, 435302
(2017
). 12.
A.
De Luca
, M.
Ferrie
, S.
Ravaine
, M.
La Deda
, M.
Infusino
, A. R.
Rashed
, A.
Veltri
, A.
Aradian
, N.
Scaramuzza
, and G.
Strangi
, “Gain functionalized core–shell nanoparticles: The way to selectively compensate absorptive losses
,” J. Mater. Chem.
22
, 8846
–8852
(2012
). 13.
A.
De Luca
, R.
Dhama
, A.
Rashed
, C.
Coutant
, S.
Ravaine
, P.
Barois
, M.
Infusino
, and G.
Strangi
, “Double strong exciton-plasmon coupling in gold nanoshells infiltrated with fluorophores
,” Appl. Phys. Lett.
104
, 103103
(2014
). 14.
B. P.
Timko
, T.
Dvir
, and D. S.
Kohane
, “Remotely triggerable drug delivery systems
,” Adv. Mater.
22
, 4925
–4943
(2010
). 15.
A. M.
Alkilany
, L. B.
Thompson
, S. P.
Boulos
, P. N.
Sisco
, and C. J.
Murphy
, “Gold nanorods: Their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions
,” Adv. Drug Deliv. Rev.
64
, 190
–199
(2012
). 16.
S.
Lal
, S. E.
Clare
, and N. J.
Halas
, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact
,” Acc. Chem. Res.
41
, 1842
–1851
(2008
). 17.
X.
Huang
, P. K.
Jain
, I. H.
El-Sayed
, and M. A.
El-Sayed
, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles
,” Lasers Med. Sci.
23
, 217
(2008
). 18.
L.
Ricciardi
, L.
Sancey
, G.
Palermo
, R.
Termine
, A.
De Luca
, E. I.
Szerb
, I.
Aiello
, M.
Ghedini
, G.
Strangi
, and M.
La Deda
, “Plasmon-mediated cancer phototherapy: The combined effect of thermal and photodynamic processes
,” Nanoscale
9
, 19279
–19289
(2017
). 19.
J. S.
Donner
, G.
Baffou
, D.
McCloskey
, and R.
Quidant
, “Plasmon-assisted optofluidics
,” ACS Nano
5
, 5457
–5462
(2011
). 20.
A.
Nitzan
and L.
Brus
, “Theoretical model for enhanced photochemistry on rough surfaces
,” J. Chem. Phys.
75
, 2205
–2214
(1981
). 21.
Y.
Dubi
, I. W.
Un
, and Y.
Sivan
, “Thermal effects–an alternative mechanism for plasmon-assisted photocatalysis
,” Chem. Sci.
11
, 5017
–5027
(2020
). 22.
G.
Baffou
, I.
Bordacchini
, A.
Baldi
, and R.
Quidant
, “Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics
,” Light Sci. Appl.
9
, 1
–16
(2020
). 23.
G.
Palermo
, D.
Pagnotto
, L.
Ricciardi
, L.
Pezzi
, M.
La Deda
, and A.
De Luca
, “Thermoplasmonic effects in gain-assisted nanoparticle solutions
,” J. Phys. Chem. C
121
, 24185
–24191
(2017
). 24.
S.-W.
Chu
, T.-Y.
Su
, R.
Oketani
, Y.-T.
Huang
, H.-Y.
Wu
, Y.
Yonemaru
, M.
Yamanaka
, H.
Lee
, G.-Y.
Zhuo
, M.-Y.
Lee
, S.
Kawata
, and K.
Fujita
, “Measurement of a saturated emission of optical radiation from gold nanoparticles: Application to an ultrahigh resolution microscope
,” Phys. Rev. Lett.
112
, 017402
(2014
). 25.
S.-W.
Chu
, H.-Y.
Wu
, Y.-T.
Huang
, T.-Y.
Su
, H.
Lee
, Y.
Yonemaru
, M.
Yamanaka
, R.
Oketani
, S.
Kawata
, S.
Shoji
, and K.
Fujita
, “Saturation and reverse saturation of scattering in a single plasmonic nanoparticle
,” ACS Photonics
1
, 32
–37
(2014
). 26.
G.
Palermo
, U.
Cataldi
, A.
Condello
, R.
Caputo
, T.
Bürgi
, C.
Umeton
, and A.
De Luca
, “Flexible thermo-plasmonics: An opto-mechanical control of the heat generated at the nanoscale
,” Nanoscale
10
, 16556
–16561
(2018
). 27.
G. E.
Lio
, G.
Palermo
, R.
Caputo
, and A.
De Luca
, “Opto-mechanical control of flexible plasmonic materials
,” J. Appl. Phys.
125
, 082533
(2019
). 28.
G. E.
Lio
, G.
Palermo
, A.
De Luca
, and R.
Caputo
, “Tensile control of the thermal flow in plasmonic heaters realized on flexible substrates
,” J. Chem. Phys.
151
, 244707
(2019
). 29.
J. T.
Hugall
and J. J.
Baumberg
, “Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: The origin of SERS backgrounds
,” Nano Lett.
15
, 2600
–2604
(2015
). 30.
X.
Xie
and D. G.
Cahill
, “Thermometry of plasmonic nanostructures by anti-Stokes electronic Raman scattering
,” Appl. Phys. Lett.
109
, 183104
(2016
). 31.
A.
Carattino
, M.
Caldarola
, and M.
Orrit
, “Gold nanoparticles as absolute nanothermometers
,” Nano Lett.
18
, 874
–880
(2018
). 32.
S.
Perumbilavil
, A.
Piccardi
, R.
Barboza
, O.
Buchnev
, M.
Kauranen
, G.
Strangi
, and G.
Assanto
, “Beaming random lasers with soliton control
,” Nat. Commun.
9
, 1
–7
(2018
). 33.
Y.
Sivan
and S.-W.
Chu
, “Nonlinear plasmonics at high temperatures
,” Nanophotonics
6
, 317
–328
(2017
). 34.
I.
Gurwich
and Y.
Sivan
, “Metal nanospheres under intense continuous-wave illumination: A unique case of nonperturbative nonlinear nanophotonics
,” Phys. Rev. E
96
, 012212
(2017
). 35.
P.-T.
Shen
, Y.
Sivan
, C.-W.
Lin
, H.-L.
Liu
, C.-W.
Chang
, and S.-W.
Chu
, “Temperature-and roughness-dependent permittivity of annealed/unannealed gold films
,” Opt. Express
24
, 19254
–19263
(2016
). 36.
I.-W.
Un
and Y.
Sivan
, “Parametric study of temperature distribution in plasmon-assisted photocatalysis,” arXiv:2007.03421 (2020).37.
J. D.
Jackson
, Classical electrodynamics, 3rd ed. (John Wiley & Sons, Inc., New York, NY,1999).38.
C. F.
Bohren
and D. R.
Huffman
, Absorption and Scattering of Light by Small Particles
(John Wiley & Sons
, 2008
).39.
S.
Yushanov
, J. S.
Crompton
, and K. C.
Koppenhoefer
, “Mie scattering of electromagnetic waves,” in Proceedings of the COMSOL Conference (2013).40.
I.-W.
Un
and Y.
Sivan
, “Size-dependence of the photothermal response of a single metal nanosphere
,” J. Appl. Phys.
126
, 173103
(2019
). 41.
A. D.
Rakić
, A. B.
Djurišić
, J. M.
Elazar
, and M. L.
Majewski
, “Optical properties of metallic films for vertical-cavity optoelectronic devices
,” Appl. Opt.
37
, 5271
–5283
(1998
). 42.
F.
Koohyar
, F.
Kiani
, S.
Sharifi
, M.
Sharifirad
, and S. H.
Rahmanpour
, “Study on the change of refractive index on mixing, excess molar volume and viscosity deviation for aqueous solution of methanol, ethanol, ethylene glycol, 1-propanol and 1, 2, 3-propantriol at T = 292.15 K and atmospheric pressure
,” Res. J. Appl. Sci. Eng. Technol.
4
, 3095
–3101
(2012
).43.
K. M.
Mayer
and J. H.
Hafner
, “Localized surface plasmon resonance sensors
,” Chem. Rev.
111
, 3828
–3857
(2011
). © 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.