Experimental demonstration of light propagation with ultralow group velocity, i.e., slow light, allows for revolutionary solutions for time-domain processing and buffering of optical signals. It can spatially compress optical energy, which lessens the device footprint and enhances linear and nonlinear optical effects. Photonic crystal waveguides (PCWs) are appealing for producing slow light since they can be on-chip integrated and operated under room temperature. However, most PCW slow-light devices are restricted to the narrow spectral range of material resonance, leading to a small delay-bandwidth product, which restricts the maximum data rate, operation frequency, and storage capacity. Furthermore, the lack of broadly tunable slow light hinders practical applications in tunable photonic devices. We propose a reconfigurable slow-light device using a PCW based on a prototypical chalcogenide glass, Ge2Sb2Te5 (GST225) to solve the problems. We find that the operating wavelength of the slow light within the structure can be reversibly switched between 3575 and 4905 nm by changing the structural state of GST225 between amorphous and crystalline ones. The corresponding average group indices are 40.8 and 54.4, respectively. We experimentally illustrate that the reversible phase transition of GST225 between amorphous and crystalline ones can be realized in nanoseconds. Our proof of concept may provide a platform for actively engineering slow light that might otherwise be difficult to obtain in photonic systems. We expect it to improve the device performance in the fields of nonlinearity and sensing.

1.
T.
Baba
,
Nat. Photonics
2
,
465
473
(
2008
).
2.
Y. A.
Vlasov
,
M.
Oboyle
,
H. F.
Hamann
, and
S. J.
Mcnab
,
Nature
438
,
65
69
(
2005
).
3.
L. V.
Hau
,
S. E.
Harris
,
Z.
Dutton
, and
C. H.
Behroozi
,
Nature
397
,
594
598
(
1999
).
4.
M.
Bajcsy
,
A. S.
Zibrov
, and
M. D.
Lukin
,
Nature
426
,
638
641
(
2003
).
5.
Y.
Xu
,
X.
Wang
,
X.
Chen
, and
L.
Zhang
,
J. Appl. Phys.
127
,
034501
(
2020
).
6.
A. V.
Turukhin
,
V. S.
Sudarshanam
,
M. S.
Shahriar
,
J. A.
Musser
,
B. S.
Ham
, and
P. R.
Hemmer
,
Phys. Rev. Lett.
88
,
023602
(
2001
).
7.
M. S.
Bigelow
,
N. N.
Lepeshkin
, and
R. W.
Boyd
,
Science
301
,
200
202
(
2003
).
8.
C.
Liu
,
Z.
Dutton
,
C. H.
Behroozi
, and
L. V.
Hau
,
Nature
409
,
490
493
(
2001
).
9.
M. D.
Lukin
and
A.
Imamoglu
,
Nature
413
,
273
276
(
2001
).
10.
J. T.
Mok
and
B. J.
Eggleton
,
Nature
433
,
811
812
(
2005
).
11.
M.
Lipson
,
J. Lightwave Technol.
23
,
4222
4238
(
2005
).
12.
C.
Monat
,
B.
Corcoran
,
D.
Pudo
,
M.
Ebnali-Heidari
,
C.
Grillet
,
M. D.
Pelusi
,
D. J.
Moss
,
B. J.
Eggleton
,
T. P.
White
,
L.
O'Faolain
, and
T. F.
Krauss
,
IEEE Journal of Selected Topics in Quantum Electronics
16
,
344
356
(
2010
).
13.
J. B.
Khurgin
,
J. Opt. Soc. Am. B
22
,
1062
1074
(
2005
).
14.
J. D.
Joannopoulos
,
S. G.
Johnson
,
J. N.
Winn
, and
R. D.
Meade
,
Photonic Crystals: Molding the Flow of Light
(Princeton University Press,
2008
), pp.
66
89
.
15.
J.
Wang
and
Y.
Long
,
Sci. Bull.
63
,
1267
1310
(
2018
).
16.
D.
Men
,
D.
Liu
, and
Y.
Li
,
Sci. Bull.
61
,
1358
1371
(
2016
).
17.
Yu. A.
Vlasov
,
S.
Petit
,
G.
Klein
,
B.
Honerlage
, and
Ch.
Hirlimann
,
Phys. Rev. E
60
,
1030
1035
(
1999
).
18.
H.
Gersen
,
T. J.
Karle
,
R. J. P.
Engelen
,
W.
Bogaerts
,
J. P.
Korterik
,
N. F.
Van Hulst
,
T. F.
Krauss
, and
L.
Kuipers
,
Phys. Rev. Lett.
94
,
1
4
(
2005
).
19.
T.
Cao
,
Y.-L. D.
Ho
,
P. J.
Heard
,
L. P.
Barry
,
A. E.
Kelly
, and
M. J.
Cryan
,
J. Opt. Soc. Am. B
26
,
768
777
(
2009
).
20.
T.
Cao
,
M. J.
Cryan
,
Y.-L. D.
Ho
,
I. J.
Craddock
, and
C. J.
Railton
,
J. Lightwave Technol.
25
,
2590
2598
(
2007
).
21.
K.
Ustun
and
H.
Kurt
,
J. Appl. Phys.
110
,
113109
(
2011
).
22.
T.
Cao
,
L.
Fang
,
Y.
Cao
,
N.
Li
,
Z.
Fan
, and
Z.
Tao
,
Sci. Bull.
64
,
814
822
(
2019
).
23.
H.
Altug
and
J.
Vuckovic
,
Appl. Phys. Lett.
86
,
111102
(
2005
).
24.
M.
Notomi
,
K.
Yamada
,
A.
Shinya
,
J.
Takahashi
,
C.
Takahashi
, and
I.
Yokohama
,
Phys. Rev. Lett.
87
,
253902
(
2001
).
25.
R. J. P.
Engelen
,
Y.
Sugimoto
,
Y.
Watanabe
,
J. P.
Korterik
,
N.
Ikeda
,
N. F.
van Hulst
,
K.
Asakawa
, and
L.
Kuipers
,
Opt. Express
14
,
1658
1672
(
2006
).
26.
A. Yu.
Petrov
and
M.
Eich
,
Appl. Phys. Lett.
85
,
4866
4868
(
2004
).
27.
K.
Ustun
and
H.
Kurt
,
J. Opt. Soc. Am. B
29
,
2403
2409
(
2012
).
28.
H.
Wu
,
D. S.
Citrin
,
L. Y.
Jiang
, and
X. Y.
Li
,
Appl. Phys. Lett.
102
,
141112
(
2013
).
29.
W.
Song
,
R. A.
Integlia
, and
W.
Jiang
,
Phys. Rev. B
82
,
235306
(
2010
).
30.
M. F.
Yanik
and
S.
Fan
,
Phys. Rev. Lett.
92
,
083901
(
2004
).
31.
A. C.
Bedoya
,
P.
Domachuk
,
C.
Grillet
,
C.
Monat
,
E. C.
Maegi
,
E.
Li
, and
B. J.
Eggleton
,
Opt. Express
20
,
11046
11056
(
2012
).
32.
A.
Casas-Bedoya
,
C.
Husko
,
C.
Monat
,
C.
Grillet
,
N.
Gutman
,
P.
Domachuk
, and
B. J.
Eggleton
,
Opt. Lett.
37
,
4215
4217
(
2012
).
33.
C.
Li
,
X.
Hu
,
W.
Gao
,
Y.
Ao
,
S.
Chu
,
H.
Yang
, and
Q.
Gong
,
Adv. Opt. Mater.
6
,
1701071
(
2018
).
34.
V.
Dmitriev
and
M. N.
Kawakatsu
,
Appl. Opt.
51
,
5917
5920
(
2012
).
35.
S.
Yan
,
X.
Zhu
,
L. H.
Frandsen
,
S.
Xiao
,
N. A.
Mortensen
,
J.
Dong
, and
Y.
Ding
,
Nat. Commun.
8
,
14411
(
2017
).
36.
Y.
Ma
,
B.
Dong
,
B.
Li
,
K.-W.
Ang
, and
C.
Lee
,
Opt. Lett.
43
,
5504
5507
(
2018
).
37.
V.
Dmitriev
and
L.
Martins
,
Appl. Opt.
55
,
3676
3680
(
2016
).
38.
S. W.
Leonard
,
H. M.
van Driel
,
J.
Schilling
, and
R. B.
Wehrspohn
,
Phys. Rev. B
66
,
161102(R)
(
2002
).
39.
Ch.
Schuller
,
F.
Klopf
,
J. P.
Reithmaier
,
M.
Kamp
, and
A.
Forchel
,
Appl. Phys. Lett.
82
,
2767
2769
(
2003
).
40.
K. R.
Khan
,
K.
Mnaymneh
,
H.
Awad
, and
I.
Hasan
,
Opt. Eng.
53
,
102705
102705
(
2014
).
41.
P.
Li
,
M.
Wong
,
X.
Zhang
,
H.
Yao
,
R.
Ishige
,
A.
Takahara
,
M.
Miyamoto
,
R.
Nishimura
, and
H.-J.
Sue
,
ACS Photonics
1
,
79
86
(
2014
).
42.
O.
Guillanlorenzo
and
F. J.
Diazotero
,
Opt. Commun.
359
,
49
52
(
2016
).
43.
H.
Ma
,
M.
Zhu
,
W.
Luo
,
W.
Li
,
K.
Fang
,
F.
Mou
, and
J.
Guan
,
J. Mater. Chem. C
3
,
2848
2855
(
2015
).
44.
N.
Ishikura
,
R.
Hosoi
,
R.
Hayakawa
,
T.
Tamanuki
,
M.
Shinkawa
, and
T.
Baba
,
Appl. Phys. Lett.
100
,
221110
(
2012
).
45.
S. R.
Ovshinsky
,
Phys. Rev. Lett.
21
,
1450
(
1968
).
46.
M.
Wuttig
and
N.
Yamada
,
Nat. Mater.
6
,
824
832
(
2007
).
47.
K.
Shportko
,
S.
Kremers
,
M.
Woda
,
D.
Lencer
,
J.
Robertson
, and
M.
Wuttig
,
Nat. Mater.
7
,
653
658
(
2008
).
48.
P.
Li
,
X.
Yang
,
T. W. W.
Mass
,
J.
Hanss
,
M.
Lewin
,
A.-K. U.
Michel
,
M.
Wuttig
, and
T.
Taubner
,
Nat. Mater.
15
,
870
(
2016
).
49.
M.
Wuttig
,
H.
Bhaskaran
, and
T.
Taubner
,
Nat. Photonics
11
,
465
476
(
2017
).
50.
G.
Tao
,
H.
Ebendorff-Heidepriem
,
A. M.
Stolyarov
,
S.
Danto
,
J. V.
Badding
,
Y.
Fink
,
J.
Ballato
, and
A. F.
Abouraddy
,
Adv. Opt. Photonics
7
,
379
458
(
2015
).
51.
J.
Wang
,
B.
He
,
S.
Dai
,
J.
Zhu
, and
Z.
Wei
,
IEEE Photonics Technol. Lett.
27
,
237
240
(
2015
).
52.
L.
Li
,
H.
Lin
,
S.
Qiao
,
Y.
Zou
,
S.
Danto
,
K.
Richardson
,
J. D.
Musgraves
,
N.
Lu
, and
J.
Hu
,
Nat. Photonics
8
,
643
649
(
2014
).
53.
C.
Grillet
,
C.
Smith
,
D.
Freeman
,
S.
Madden
,
B.
Luther-Davis
,
E. C.
Magi
,
D. J.
Moss
, and
B. J.
Eggleton
,
Optics Express
14
,
1070
1078
(
2006
).
54.
S.
Raoux
,
Ann. Rev. Mater. Res.
39
,
25
48
(
2009
).
55.
M.
Terao
,
T.
Morikawa
, and
T.
Ohta
,
Jpn. J. Appl. Phys.
48
,
080001
(
2009
).
56.
J.
Orava
,
A. L.
Greer
,
B.
Gholipour
,
D. W.
Hewak
, and
C. E.
Smith
,
Appl. Phys. Lett.
101
,
091906
(
2012
).
57.
C. H.
Chu
,
C. D.
Shiue
,
H. W.
Cheng
,
M. L.
Tseng
,
H.-P.
Chiang
,
M.
Mansuripur
, and
D. P.
Tsai
,
Opt. Express
18
,
18383
18393
(
2010
).
58.
A.-K. U.
Michel
,
P.
Zalden
,
D. N.
Chigrin
,
M.
Wuttig
,
A. M.
Lindenberg
, and
T.
Taubner
,
ACS Photonics
1
,
833
839
(
2014
).
59.
B.
Gholipour
,
J.
Zhang
,
K. F.
Macdonald
,
D. W.
Hewak
, and
N. I.
Zheludev
,
Adv. Mater.
25
,
3050
3054
(
2013
).
60.
J.
Thorstensen
and
S. E.
Foss
,
J. Appl. Phys.
112
,
103514
(
2012
).
61.
N.
Yamada
,
E.
Ohno
,
K.
Nishiuchi
,
N.
Akahira
, and
M.
Takao
,
J. Appl. Phys.
69
,
2849
2856
(
1991
).
62.
V.
Weidenhof
,
N.
Pirch
,
I.
Friedrich
,
S.
Ziegler
, and
M.
Wuttig
,
J. Appl. Phys.
88
,
657
664
(
2000
).
63.
M.
Wuttig
and
M.
Salinga
,
Nat. Mater.
11
,
270
271
(
2012
).
64.
S.
McNab
,
N.
Moll
, and
Y.
Vlasov
,
Optics Express
11
,
2927
2939
(
2003
).
65.
Y. A.
Vlasov
and
S. J.
McNab
,
Opt. Lett.
31
,
50
52
(
2006
).
66.
W. C. L.
Hopman
,
R. M.
de Ridder
,
S.
Selvaraja
,
C. G.
Bostan
,
V. J.
Gadgil
,
L.
Kuipers
, and
A.
Driessen
, in
Photonic Crystal Materials and Devices III
, edited by
R. M.
DeLaRue
,
P.
Viktorovitch
,
C.
Lopez
, and
M.
Midrio
(SPIE,
2006
), Vol. 6182.
67.
D.
Freeman
,
C.
Grillet
,
M. W.
Lee
,
C. L. C.
Smith
,
Y.
Ruan
,
A.
Rode
,
M.
Krolikowska
,
S.
Tomljenovichanic
,
C. M.
De Sterke
, and
M. J.
steel
,
Photonics Nanostruct. Fundamentals Appl.
6
,
3
11
(
2008
).
68.
D.
Freeman
,
S.
Madden
, and
B.
Luther-Davies
,
Opt. Express
13
,
3079
3086
(
2005
).
69.
F.
Chen
,
J. Appl. Phys.
106
,
081101
(
2009
).
70.
P.
Zhang
,
Z.
Zhao
,
J.
Zeng
,
Q.
Zhang
,
X.
Wang
,
F.
Chen
,
X.
Shen
, and
S.
Dai
,
Opt. Mater. Express
6
,
1853
1860
(
2016
).
71.
T.
Cao
,
L.
Zhang
,
R. E.
Simpson
,
C.
Wei
, and
M. J.
Cryan
,
Opt. Express
21
,
27841
27851
(
2013
).
72.
P. T.
Lin
,
S. W.
Kwok
,
H.-Y. G.
Lin
,
V.
Singh
,
L. C.
Kimerling
,
G. M.
Whitesides
, and
A.
Agarwal
,
Nano Lett.
14
,
231
238
(
2014
).
73.
S. G.
Johnson
,
S.
Fan
,
P. R.
Villeneuve
,
J. D.
Joannopoulos
, and
L. A.
Kolodziejski
,
Phys. Rev. B
60
,
5751
5758
(
1999
).
74.
CST STUDIO SUITE, see www.cst.com, 2016.
75.
T. F.
Krauss
,
J. Phys. D Appl. Phys.
40
,
2666
2670
(
2007
).
76.
J.
Tang
,
T.
Wang
,
X.
Li
,
B.
Wang
,
C.
Dong
,
L.
Gao
,
B.
Liu
,
Y.
He
, and
W.
Yan
,
J. Lightwave Technol.
31
,
3188
3194
(
2013
).
77.
S.
Yan
,
X.
Zhu
,
L. H.
Frandsen
,
S.
Xiao
,
N. A.
Mortensen
,
J.
Dong
, and
Y.
Ding
,
Nat. Commun.
8
,
14411
14411
(
2017
).
78.
J.
Tang
,
T.
Wang
,
X.
Li
,
B.
Liu
,
B.
Wang
, and
Y.
He
,
J. Opt. Soc. Am. B
31
,
1011
1017
(
2014
).
79.
R. F.
Harrington
, Time-Harmonic Electromagnetic Fields (McGraw-Hill,
1961
).
80.
R. E.
Collin
,
Phys. Today
14
,
50
51
(
1961
).
81.
I. V.
Lindell
,
IEEE Trans. Microwave Theor. Tech.
30
,
1194
1204
(
1982
).
82.
M. I.
Shalaev
,
W.
Walasik
,
A.
Tsukernik
,
Y.
Xu
, and
N. M.
Litchinitser
,
Nat. Nanotechnol.
14
,
31
34
(
2019
).
83.
P.
Joly
,
G. Variational FDTD-like Methods for Maxwell’s Equations
(
Springer
,
Berlin
,
2004
).
84.
Y.-N.
Zhang
,
Y.
Zhao
, and
Q.
Wang
,
Int. J. Optomech.
8
,
114
128
(
2014
).
85.
M. H.
Aram
and
S.
Khorasani
,
Mesoscale Nanoscale Phys.
2
,
056201
(
2015
).
86.
G. P.
Agrawal
,
Fiber-Optic Communication Systems
(John Wiley and Sons,
2002
), pp.
24
78
.

Supplementary Material

You do not currently have access to this content.