This work sets the basis for nonlinear homodyne and heterodyne photothermal radiometry (PTR) as a form of active pyrometry. The intrinsic nonlinearity of thermo-optical conversion described by blackbody radiation laws generates intermodulation harmonics, among which the sum and difference frequencies are easily measured by lock-in amplifiers connected in series or in parallel. Double modulation heterodyne PTR avoids superposition with harmonics generated in nonlinear homodyne PTR by laser modulation distortion. Useful expressions are derived for the determination of temperature variations of the target relative to its absolute temperature, independently of emissivity. In order to determine one or the other temperature, calibration of one of them is necessary. The effects of spectral and temperature dependence of emissivity are also discussed. Local self-heating of a glassy carbon target could be estimated using two superposed laser sources modulated at 30 Hz and 40 Hz. This application opens the path to perform temperature-dependent thermophysical properties’ investigations in a non-contact manner, with a simple setup. Absolute temperature was determined on the surface of a Peltier element modulated at 0.1 Hz, at the location irradiated by a laser beam modulated at 1 Hz. Three data reduction methods (series, parallel, and transient configurations) yielded concordant results.

1.
D. P.
DeWitt
and
G. D.
Nutter
,
Theory and Practice of Radiation Thermometry
(
Wiley
,
New York
,
1988
).
2.
D. P.
DeWitt
and
H.
Kunz
, “
Theory and technique for surface temperature determinations by measuring the radiance temperatures and the absorptance ratio for two wavelengths
,” in
Temperature: Its Measurement and Control in Science and Industry
(
Plumb
,
1972
), Vol. 4, pp. 599–610.
3.
D.
Hernandez
,
A.
Netchaieff
, and
A.
Stein
, “
True temperature measurement on metallic surfaces using a two-color pyroreflectometer method
,”
Rev. Sci. Instrum.
80
,
094903
(
2009
).
4.
Th.
Loarer
, “
Surface temperature measurement of plasma facing components in metallic environment
,”
Contrib. Plasma Phys.
51
,
201
206
(
2011
).
5.
F. G.
Boebel
and
H.
Moller
, “
Simultaneous in situ measurement of film thickness and temperature by using multiple wavelengths pyrometric interferometry (MWPI)
,”
IEEE Trans. Semicond. Manuf.
6
,
112
118
(
1993
).
6.
Th.
Duvaut
, “
Comparison between multiwavelength infrared and visible pyrometry: Application to metals
,”
Infrared Phys. Technol.
51
,
292
299
(
2008
).
7.
J. C.
Krapez
,
C.
Belanger
, and
P.
Cielo
, “
A double-wedge reflector for emissivity enhanced pyrometry
,”
Meas. Sci. Technol.
1
,
857
864
(
1990
).
8.
A. P.
Levick
and
G.
Edwards
, “
A fibre-optic based laser absorption radiation thermometry (LART) instrument for surface temperature measurement
,”
Anal. Sci.
17
,
S438
S441
(
2001
).
9.
A. D.
Fleming
, “
Nonlinear photothermal radiometry and its applications to pyrometry and thermal property measurements
,”
All Graduate Theses and Dissertations
(Utah State University and Université de Reims Champagne Ardenne URCA,
2017
),
6545
, see https://digitalcommons.usu.edu/etd/6545.
10.
T.
Borca-Tasciuc
and
G.
Chen
, “
Temperature measurement of fine wires by photothermal radiometry
,”
Rev. Sci. Instrum.
68
,
4080
4083
(
1997
).
11.
G.
Chen
and
T.
Borca-Tasciuc
, “
Applicability of photothermal radiometry for temperature measurement of semiconductors
,”
Int. J. Heat Mass Transfer
41
,
2279
2285
(
1998
).
12.
Q.
Sun
,
A.
Melnikov
, and
A.
Mandelis
, “
Camera-based high frequency heterodyne lock-in carrierographic (frequency-domain photoluminescence) imaging of crystalline silicon wafers
,”
Phys. Status Solidi A
213
,
405
411
(
2016
).
13.
D. P.
Almond
and
P. M.
Patel
, “
Physics and its applications
,” in
Photothermal Science and Techniques
, edited by
E. R.
Dobbs
and
S. B.
Palmer
(
Chapman and Hall
,
London
,
1996
), Vol. 10.
14.
R.
Fuente
,
E.
Apinaniz
,
A.
Mendioroz
, and
A.
Salazar
, “
Simultaneous measurement of thermal diffusivity and optical absorption coefficient using photothermal radiometry. I. Homogeneous solids
,”
J. Appl. Phys.
110
,
033515
(
2011
).
15.
M.
Chirtoc
,
N.
Horny
,
I.
Tavman
, and
A.
Turgut
, “
Photothermal spectroscopy of polymer nanocomposites
,” in
Spectroscopy of Polymer Nanocomposites
, edited by
S.
Thomas
,
D.
Rouxel
, and
D.
Ponnamma
(
Elsevier
,
Amsterdam
,
2016
), Chap. 11, pp. 312–361.
16.
P.-E.
Nordal
and
S. O.
Kanstad
, “
Photothermal radiometry
,”
Phys. Scr.
20
,
659
662
(
1979
).
17.
R.
Santos
and
L. C. M.
Miranda
, “
Theory of the photothermal radiometry with solids
,”
J. Appl. Phys.
52
,
4194
4198
(
1981
).
18.
R. D.
Tom
,
E. P.
O’Hara
, and
D.
Benin
, “
A generalized model of photothermal radiometry
,”
J. Appl. Phys.
53
,
5392
5400
(
1982
).
19.
R. E.
Imhof
,
B.
Zhang
, and
D. J. S.
Birch
, “
Photothermal radiometry for NDE
,”
in
Progress in Photothermal and Photoacoustic Science and Technology
, Non-Destructive Evaluation (NDE) Vol. II, edited by
A.
Mandelis
(
Prentice Hall
,
Upper Saddle River
,
NJ
,
1994
), Chap. 7.
20.
Y.
Liu
and
A.
Mandelis
, “
Laser optical and photothermal thermometry of solids and thin films
,” in
Radiometric Temperature Measurements. I. Fundamentals
, edited by
Z. M.
Zhang
,
B. K.
Tsai
, and
G.
Machin
, Experimental Methods in the Physical Sciences Vol. 42, edited by
Th.
Lucatorto
and
A. C.
Parr
(
Academic Press
,
Amsterdam
,
2010
), Chap. 7.
21.
S.
Dilhaire
,
G.
Pernot
,
G.
Calbris
,
J. M.
Rampnoux
, and
S.
Grauby
, “
Heterodyne picosecond thermoreflectance applied to nanoscale thermal metrology
,”
J. Appl. Phys.
110
,
114314
(
2011
).
22.
K. T.
Regner
,
S.
Majumdar
, and
J. A.
Malen
, “
Instrumentation of broadband frequency domain thermoreflectance for measuring thermal conductivity accumulation functions
,”
Rev. Sci. Instrum.
84
,
064901
(
2013
).
23.
High-resolution spectral modeling
, see www.spectralcalc.com/blackbody/integrate_planck.php for Radiance: Integrating the Planck equation.
24.
V.
Gusev
,
A.
Mandelis
, and
R.
Bleiss
, “
Theory of second harmonic thermal-wave generation: One-dimensional geometry
,”
Int. J. Thermophys.
14
,
321
337
(
1993
).
25.
Internet site
, see https://analog.intgckts.com/equivalent-noise-bandwidth/ for Analog/RF IntgCkts.
26.
M.
Chirtoc
, “
Investigation of layered systems by photothermal methods with periodic excitation
,” in
Thermal Wave Physics and Related Photothermal Techniques: Basic Principles and Recent Developments
, edited by
E.
Marín
(
Transworld Research Network
,
Kerala
,
2009
).
27.
T.
Králík
,
V.
Musilová
,
P.
Hanzelka
, and
J.
Frolec
, “
Method for measurement of emissivity and absorptivity of highly reflective surfaces from 20K to room temperatures
,”
Metrologia
53
,
743
753
(
2016
).
28.
A. J.
Sievers
, “
Temperature dependence of the emissivity of transition metals
,”
Sol. Energy Mat.
1
,
431
439
(
1979
).
29.
C.-D.
Wen
and
I.
Mudawar
, “
Experimental investigation of emissivity of aluminum alloys and temperature determination using multispectral radiation thermometry (MRT) algorithms
,”
J. Mat. Eng. Performance (JMEPEG)
11
,
551
562
(
2002
).
You do not currently have access to this content.