High temperature creep deformation of hcp-Mg alloys is dominated by dislocation climb driven by out-of-plane (OOP) vacancy migration. Past experiments and atomistic simulations have indicated that Zn addition reduces vacancy migration tendencies and improves creep resistance. Here, we have compared in-plane (IP) and out-of-plane (OOP) vacancy migration mechanisms in binary Mg–X (Ca, Y, and Gd) and ternary Mg–X (Ca, Y, and Gd)–Zn alloys using density functional theory based first principles computations. Irrespective of Zn addition, the migration barrier for OOP diffusion was consistently higher than IP in our prototype binary and ternary alloys. The presence of Zn in ternary systems, however, substantially increases the OOP activation barrier relative to binary alloys. The higher OOP barrier in Mg–X–Zn was attributed to favorable local relaxation, enhanced charge localization, higher interplanar bond stiffness, and greater s orbital electron occupancy in the peak saddle state. Combined, these factors restrict non-conservative dislocation climb by impeding out-of-plane vacancy movement and improve the creep resistance of ternary Mg–X (Ca, Y, and Gd)–Zn alloys.

1.
M.
Bamberger
and
G.
Dehm
, “
Trends in the development of new Mg alloys
,”
Annu. Rev. Mater. Res.
38
,
505
533
(
2008
).
2.
T. M.
Pollock
, “
Weight loss with magnesium alloys
,”
Science
328
,
986
987
(
2010
).
3.
J.-F.
Nie
, “
Precipitation and hardening in magnesium alloys
,”
Metall. Mater. Trans. A
43
,
3891
3939
(
2012
).
4.
S.
You
,
Y.
Huang
,
K. U.
Kainer
, and
N.
Hort
, “
Recent research and developments on wrought magnesium alloys
,”
J. Magn. Alloys
5
,
239
253
(
2017
).
5.
A. A.
Luo
, “
Magnesium casting technology for structural applications
,”
J. Magn. Alloys
1
,
2
22
(
2013
).
6.
S. M.
Zhu
,
M. A.
Gibson
,
M. A.
Easton
, and
J. F.
Nie
, “
The relationship between microstructure and creep resistance in die-cast magnesium-rare earth alloys
,”
Scr. Mater.
63
,
698
703
(
2010
).
7.
B. L.
Mordike
and
T.
Ebert
, “
Magnesium
,”
Mater. Sci. Eng. A
302
,
37
45
(
2001
).
8.
F. R. N.
Nabarro
, “
Creep in commercially pure metals
,”
Acta Mater.
54
,
263
295
(
2006
).
9.
M. E.
Kassner
and
M.-T.
Pérez-Prado
, “
Five-power-law creep in single phase metals and alloys
,”
Prog. Mater. Sci.
45
,
1
102
(
2000
).
10.
M. T.
Perez-Prado
and
M. E.
Kassner
,
Diffusional Creep. Fundamentals of Creep in Metals and Alloys
, 3rd ed. (
Elsevier Ltd
,
2015
).
11.
D.
Choudhuri
,
S. G.
Srinivasan
,
M. A.
Gibson
, and
R.
Banerjee
, “
Bonding environments in a creep–resistant Mg–RE–Zn alloy
,” in
Magnesium Technology
, edited by
K.
Solanki
,
D.
Orlov
,
A.
Singh
, and
N.
Neelameggham
(
Min. Met. Mater. Ser.
,
Springer, Cham
,
2017
), pp.
471
475
.
12.
M. O.
Pekguleryuz
and
A. A.
Kaya
, “
Creep resistant magnesium alloys for powertrain applications
,”
Adv. Eng. Mater.
5
,
866
878
(
2003
).
13.
K. R.
Athul
,
U. T. S.
Pillai
,
A.
Srinivasan
, and
B. C.
Pai
, “
A review of different creep mechanisms in Mg alloys based on stress exponent and activation energy
,”
Adv. Eng. Mater.
18
,
770
794
(
2016
).
14.
B. L.
Mordike
, “
Creep-resistant magnesium alloys
,”
Mater. Sci. Eng. A
324
,
103
112
(
2002
).
15.
D.
Choudhuri
and
S. G.
Srinivasan
, “
Density functional theory-based investigations of solute kinetics and precipitate formation in binary magnesium-rare earth alloys: A review
,”
Comput. Mater. Sci.
159
,
235
256
(
2019
).
16.
B. L.
Mordike
, “
Development of highly creep resistant magnesium alloys
,”
J. Mater. Process. Technol.
117
,
391
394
(
2001
).
17.
L.
Wang
,
J.
Yang
,
L.
Wang
, and
Z.
Cao
, “
Influence of Sc on microstructure and mechanical properties of high Zn-containing Mg alloy
,”
Adv. Mater. Sci. Eng.
2014
,
1
5
(
2014
).
18.
L.
Kong
, “
Two main and a new type rare earth elements in Mg alloys: A review
,”
IOP Conf. Ser. Mater. Sci. Eng.
242
,
012026
(
2017
).
19.
S.
Tekumalla
,
S.
Seetharaman
,
A.
Almajid
, and
M.
Gupta
, “
Mechanical properties of magnesium-rare earth alloy systems: A review
,”
Metals
5
,
1
39
(
2015
).
20.
D.
Choudhuri
,
D.
Jaeger
,
M. A.
Gibson
, and
R.
Banerjee
, “
Role of Zn in enhancing the creep resistance of Mg-RE alloys
,”
Scr. Mater.
86
,
32
35
(
2014
).
21.
S. S.
Vagarali
and
T. G.
Langdon
, “
Deformation mechanisms in h.c.p. metals at elevated temperatures-II. Creep behavior of a Mg-0.8% Al solid solution alloy
,”
Acta Metall.
30
,
1157
1170
(
1982
).
22.
M.
Suzuki
,
T.
Kimura
,
J.
Koike
, and
K.
Maruyama
, “
Strengthening effect of Zn in heat resistant Mg-Y-Zn solid solution alloys
,”
Scr. Mater.
48
,
997
1002
(
2003
).
23.
D.
Choudhuri
 et al, “
Exceptional increase in the creep life of magnesium rare-earth alloys due to localized bond stiffening
,”
Nat. Commun.
8
,
1
9
(
2017
).
24.
C.
Wolverton
, “
Solute-vacancy binding in aluminum
,”
Acta Mater.
55
,
5867
5872
(
2007
).
25.
D.
Simonovic
and
M. H. F.
Sluiter
, “
Impurity diffusion activation energies in Al from first principles
,”
Phys. Rev. B
79
,
1
12
(
2009
).
26.
D.
Shin
and
C.
Wolverton
, “
First-principles density functional calculations for Mg alloys: A tool to aid in alloy development
,”
Scr. Mater.
63
,
680
685
(
2010
).
27.
D.
Shin
and
C.
Wolverton
, “
First-principles study of solute–vacancy binding in magnesium
,”
Acta Mater.
58
,
531
540
(
2010
).
28.
“Materials Design 2012,” MedeA version 2.10 (Angel Fire, NM Mater Des).
29.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
30.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
31.
W. A.
Counts
,
C.
Wolverton
, and
R.
Gibala
, “
First-principles energetics of hydrogen traps in α-Fe: Point defects
,”
Acta Mater.
58
,
4730
4741
(
2010
).
32.
P.
Paranjape
,
P.
Gopal
, and
S. G.
Srinivasan
, “
First-principles study of diffusion and interactions of hydrogen with silicon, phosphorus, and sulfur impurities in nickel
,”
J. Appl. Phys.
125
,
125104
(
2019
).
33.
H.
Jónsson
,
G.
Mills
, and
K. W.
Jacobsen
, “
Nudged elastic band method for finding minimum energy paths of transitions
,” in
Classical and Quantum Dynamics in Condensed Phase Simulations
(
World Scientific
,
1998
), pp.
385
404
.
34.
S.
Ganeshan
,
L. G.
Hector
, and
Z.-K.
Liu
, “
First-principles calculations of impurity diffusion coefficients in dilute Mg alloys using the 8-frequency model
,”
Acta Mater.
59
,
3214
3228
(
2011
).
35.
G.
Henkelman
and
H.
Jónsson
, “
Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points
,”
J. Chem. Phys.
113
,
9978
9985
(
2000
).
36.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
, “
Climbing image nudged elastic band method for finding saddle points and minimum energy paths
,”
J. Chem. Phys.
113
,
9901
9904
(
2000
).
37.
M.
Yuasa
and
M.
Mabuchi
, “
Bond mobility mechanism in grain boundary embrittlement: First-principles tensile tests of Fe with a P-segregated Σ3 grain boundary
,”
Phys. Rev. B
82
,
094108
(
2010
).
38.
N.
Chetty
,
M.
Weinert
,
T. S.
Rahman
, and
J. W.
Davenport
, “
Vacancies and impurities in aluminum and magnesium
,”
Phys. Rev. B
52
,
6313
6326
(
1995
).
39.
M.
Fronzi
,
H.
Kimizuka
, and
S.
Ogata
, “
Atomistic investigation of vacancy assisted diffusion mechanism in Mg ternary (Mg-RE-M) alloys
,”
Comput. Mater. Sci.
98
,
76
82
(
2015
).
40.
L.
Huber
,
I.
Elfimov
,
J.
Rottler
, and
M.
Militzer
, “
Ab initio calculations of rare-earth diffusion in magnesium
,”
Phys. Rev. B
85
,
144301
(
2012
).
41.
B.-C.
Zhou
,
S.-L.
Shang
,
Y.
Wang
, and
Z.-K.
Liu
, “
Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study
,”
Acta Mater.
103
,
573
586
(
2016
).
42.
C.
Jiang
,
D. J.
Sordelet
, and
B.
Gleeson
, “
Site preference of ternary alloying elements in Ni3Al: A first-principles study
,”
Acta Mater.
54
,
1147
1154
(
2006
).
43.
C.
Jiang
and
S. G.
Srinivasan
, “
Unexpected strain-stiffening in crystalline solids
,”
Nature
496
,
339
342
(
2013
).
44.
E. D.
Hondros
and
P. J.
Henderson
, “
Role of grain boundary segregation in diffusional creep
,”
Metall. Trans. A
14
,
521
530
(
1983
).
45.
M.
Bugnet
,
A.
Kula
,
M.
Niewczas
, and
G. A.
Botton
, “
Segregation and clustering of solutes at grain boundaries in Mg-rare earth solid solutions
,”
Acta Mater.
79
,
66
73
(
2014
).
46.
J. P.
Hadorn
 et al, “
Solute clustering and grain boundary segregation in extruded dilute Mg-Gd alloys
,”
Scr. Mater.
93
,
28
31
(
2014
).
47.
J. F.
Nie
,
Y. M.
Zhu
,
J. Z.
Liu
, and
X. Y.
Fang
, “
Periodic segregation of solute atoms in fully coherent twin boundaries
,”
Science
340
,
957
960
(
2013
).
48.
R.
Arroyave
,
D.
Shin
, and
Z.-K.
Liu
, “
Ab initio thermodynamic properties of stoichiometric phases in the Ni-Al system
,”
Acta Mater.
53
,
1809
1819
(
2005
).
49.
M. W. C.
Dharma-wardana
, “
Current issues in finite-T density-functional theory and warm-correlated matter
,”
Computation
4
,
1
15
(
2016
).
You do not currently have access to this content.