A simple procedure has been proposed to estimate atmospheric-pressure (AP) plasma parameters based on the electric field simulation of a very-high-frequency plasma system including the impedance matching unit. The capacitively coupled plasma is generated between metal electrodes with a narrow gap, where the standard Langmuir probe method cannot be applied. The amplitudes of current density (J0) and voltage (V0) between the electrodes are determined by the three-dimensional computer simulation of the system in the impedance matched state using two experimental parameters (i.e., the separations between two parallel-plate capacitors) in the matching unit. Approximate analytical solutions relating the central electron density (n0) and the sheath thickness to J0 and V0 are derived based on a simplified inhomogeneous plasma model with collisional sheaths. The average electron temperature Te is estimated using a power balance relation between the total powers absorbed and lost in the ionizing plasma. The results on power dependences of n0 and Te show reasonable agreement with the predictions by the particle and power balance relations. In the case of AP plasma of Ar or He mixed with impurity or process gas molecules, it is impossible to determine Te. However, n0 can be obtained and the collisional energy loss per electron–ion pair creation (ɛc) can be estimated, which brings certain information on the change of plasma chemistry. Since the proposed procedure is simple and non-intrusive, it might become a useful tool for discussing AP plasma properties in process developments.

1.
M.
Kogoma
,
M.
Kusano
, and
Y.
Kusano
,
Generation and Applications of Atmospheric Pressure Plasmas
(
Nova Science
,
New York
,
2011
).
2.
D.
Pappas
,
J. Vac. Sci. Technol. A
29
,
020801
(
2011
).
3.
T.
Belmonte
,
G.
Henrion
, and
T.
Gries
,
J. Therm. Spray Technol.
20
,
744
(
2011
).
4.
D.
Merche
,
N.
Vandencasteele
, and
F.
Reniers
,
Thin Solid Films
520
,
4219
(
2012
).
5.
F.
Massines
,
C. S.
Bournet
,
F.
Fanelli
,
N.
Naudé
, and
N.
Gherardi
,
Plasma Process. Polym.
9
,
1041
(
2012
).
6.
H.
Kakiuchi
,
H.
Ohmi
, and
K.
Yasutake
,
J. Vac. Sci. Technol. A
32
,
030801
(
2014
).
7.
H.
Ohmi
,
T.
Yamada
,
H.
Kakiuchi
, and
K.
Yasutake
,
Jpn. J. Appl. Phys.
50
,
08JD01
(
2011
).
8.
H.
Kakiuchi
,
H.
Ohmi
, and
K.
Yasutake
,
Precis. Eng.
60
,
265
(
2019
).
9.
J. M.
de Regt
,
F. P. J.
de Groote
,
J. A. M.
van der Mullen
, and
D. C.
Schram
,
Spectrochim. Acta Part B
51
,
1371
(
1996
).
10.
K.
Kano
,
M.
Suzuki
, and
H.
Akatsuka
,
Plasma Sources Sci. Technol.
9
,
314
(
2000
).
11.
T.
Belmonte
,
C.
Noël
,
T.
Gries
,
J.
Martin
, and
G.
Henrion
,
Plasma Sources Sci. Technol.
24
,
064003
(
2015
).
12.
J. A. M.
van der Mullen
,
Phys. Rep.
191
,
109
(
1990
).
13.
J.
Jonkers
,
M.
van de Sande
,
A.
Sola
,
A.
Gamero
, and
J.
van der Mullen
,
Plasma Sources Sci. Technol.
12
,
30
(
2003
).
14.
J. Y.
Choi
,
N.
Takano
,
K.
Urabe
, and
K.
Tachibana
,
Plasma Sources Sci. Technol.
18
,
035013
(
2009
).
15.
M.
Kanoh
,
M.
Yamage
, and
H.
Takada
,
Jpn. J. Appl. Phys.
40
,
1457
(
2001
).
16.
S.
Kanno
,
J.
Tanaka
,
T.
Tetsuka
,
R.
Nishio
, and
H.
Yamamoto
,
Jpn. J. Appl. Phys.
43
,
1199
(
2004
).
17.
H.
Kakiuchi
,
H.
Ohmi
, and
K.
Yasutake
, in
Trends in Thin Solid Films Research
, edited by
A. R.
Jost
(
Nova Science
,
New York
,
2007
), p.
1
.
18.
K. P.
Singh
and
S.
Roy
,
Appl. Phys. Lett.
91
,
081504
(
2007
).
19.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Material Processing
(
Wiley
,
New York
,
2005
).
20.
N.
Marcuvitz
, in
Principles of Microwave Circuits
, edited by
C. G.
Montgomery
,
R. H.
Dicke
, and
E. M.
Purcell
(
McGraw-Hill
,
New York
,
1948
), p.
274
.
21.
J. J.
Barroso
,
P. J.
Castro
,
J. P. L.
Neto
, and
O. D.
Aguiar
,
Int. J. IR Millimeter Waves
26
,
1071
(
2005
).
22.
C. M.
Western
,
J. Quant. Spectrosc. Radiat. Transf.
186
,
221
(
2017
).
23.
S.
Nunomura
,
M.
Kondo
, and
H.
Akatsuka
,
Plasma Sources Sci. Technol.
15
,
783
(
2006
).
24.
V. M.
Donnelly
and
M. V.
Malyshev
,
Appl. Phys. Lett.
77
,
2467
(
2000
).
25.
A.
Sarani
,
A.
Yu. Nikiforov
, and
C.
Leys
,
Phys. Plasmas
17
,
063504
(
2010
).
27.
C. A.
Balanis
,
Advanced Engineering in Electromagnetics
(
Wiley
,
New York
,
1989
).
28.
M.
Shuto
,
H.
Ohmi
,
H.
Kakiuchi
,
T.
Yamada
, and
K.
Yasutake
,
J. Appl. Phys.
122
,
043303
(
2017
).
29.
H. W.
Drawin
and
F.
Emard
,
Z. Phys.
243
,
326
(
1971
).
30.
D. A.
Benoy
,
J. A. M.
van der Mullen
,
B.
van der Sijde
, and
D. C.
Schram
,
J. Quant. Spectrosc. Radiat. Transfer
46
,
195
(
1991
).
31.
M. J.
Seaton
,
Mon. Notes Roy. Astron. Soc.
119
,
81
(
1959
).
32.
M.
Biondi
, in
Principles of Laser Plasmas
, edited by
G.
Bekefi
(
Wiley
,
NY
,
1976
), Chap. 4.
33.
D. R.
Bates
and
A.
Dalgarno
, in
Atomic and Molecular Processes
, edited by
D. R.
Bates
(
Academic
,
NY
,
1962
), p.
245
.
34.
C. B.
Collins
,
H. S.
Hicks
,
W. E.
Wells
, and
R.
Burton
,
Phys. Rev. A
6
,
1545
(
1972
).
35.
M.
Capitelli
,
C. M.
Ferreira
,
B. F.
Gordiets
, and
A. I.
Osipov
,
Plasma Kinetics in Atmospheric Gases
(
Springer
,
Berlin
,
2000
), p.
140
.
36.
L. P.
Pitaevskii
,
Zh. Eksp. Teor. Fiz.
42
(
5
),
1326
(
1962
) [Sov. Phys. JETP 15(5), 919 (1962)].
38.
L. M.
Biberman
,
V. S.
Vorob’ev
, and
I. T.
Yakubov
,
Kinetics of Nonequilibrium Low-Temperature Plasmas
(
Consultant Bureau
,
NY
,
1987
), p.
209
.
39.
A.
Funahashi
and
S.
Takeda
,
J. Phys. Soc. Jpn.
25
,
298
(
1968
).
40.
S. V.
Desai
and
W. H.
Corcoran
,
J. Quant. Spectrosc. Transfer
9
,
1371
(
1969
).
41.
T.
Fujimoto
,
J. Phys. Soc. Jpn.
47
,
273
(
1979
).
42.
M. A.
Lieberman
,
IEEE Trans. Plasma Sci.
17
,
338
(
1989
).
43.
V. A.
Godyak
and
N.
Sternberg
,
Phys. Rev. A
42
,
2299
(
1990
).
44.
M.
Moravej
,
X.
Yang
,
G. R.
Nowling
,
J. P.
Chang
,
R. F.
Hicks
, and
S. E.
Babayan
,
J. Appl. Phys.
96
,
7011
(
2004
).
45.
N.
Ohno
,
M. A.
Razzak
,
H.
Ukai
,
S.
Takamura
, and
Y.
Uesugi
,
Plasma Fusion Res.
1
,
028
(
2006
).
46.
J. T.
Gudmundsson
,
T.
Kimura
, and
M. A.
Lieberman
,
Plasma Sources Sci. Technol.
8
,
22
(
1999
).
47.
M. C.
Quintero
,
A.
Rodero
,
M. C.
García
, and
A.
Sola
,
Appl. Spectrosc.
51
,
778
(
1997
).
48.
A.
Barkhordari
,
A.
Ganjovi
,
I.
Mirzaei
,
A.
Falahat
, and
M. N. R.
Ravari
,
J. Theor. Appl. Phys.
11
,
301
(
2017
).
49.
A.
Rodero
,
M. C.
García
,
M. C.
Quintero
,
A.
Sola
, and
A.
Gamero
,
J. Appl. Phys. D Appl. Phys.
29
,
681
(
1996
).
50.
W. E.
Wentworth
,
Y.
Qin
,
S.
Wiedeman
,
S. D.
Stearns
, and
J.
Madabushi
,
Appl. Spectrosc.
49
,
1282
(
1995
).
51.
See https://www.nist.gov/pml/atomic-spectra-database for “NIST Atomic Spectra Database” (last accessed August 21, 2020).
You do not currently have access to this content.