Intensity Modulated Photocurrent Spectroscopy (IMPS) is a small-perturbation optoelectronic technique that measures the quantum efficiency of a photoelectrochemical device as a function of optical excitation frequency. Metal Halide Perovskites (MHPs) are mixed electronic–ionic semiconductors with an extraordinary complex optoelectronic behavior and a record efficiency surpassing 25%. In this paper, we propose a simplified procedure to analyze IMPS data in MHPs based on the analysis of the internal quantum efficiency and the time signals featuring in the frequency spectra. In this procedure, we look at the change of each signal when optical excitation wavelength, photon flux, and temperature are varied for an archetypical methyl ammonium lead iodide solar cell. We use drift-diffusion modeling and comparison with relatively simpler dye-sensitized solar cells (DSC) with viscous and non-viscous electrolytes to help us to understand the origin of the three signals appearing in MHP cells and the measurement of the internal quantum efficiency.

1.
H. J.
Snaith
,
J. Phys. Chem. Lett.
4
,
3623
(
2013
).
2.
N.-G.
Park
,
J. Phys. Chem. Lett.
4
,
2423
(
2013
).
3.
C.
Eames
,
J. M.
Frost
,
P. R. F.
Barnes
,
B. C.
O’Regan
,
A.
Walsh
, and
M. S.
Islam
,
Nat. Commun.
6
,
7497
(
2015
).
4.
See https://www.nrel.gov/pv/cell-efficiency.html (accessed September 2020).
5.
G.
Xing
,
N.
Mathews
,
S.
Sun
,
S. S.
Lim
,
Y. M.
Lam
,
M.
Grätzel
,
S.
Mhaisalkar
, and
T. C.
Sum
,
Science
342
,
344
(
2013
).
6.
S. D.
Stranks
,
G. E.
Eperon
,
G.
Grancini
,
C.
Menelaou
,
M. J. P.
Alcocer
,
T.
Leijtens
,
L. M.
Herz
,
A.
Petrozza
, and
H. J.
Snaith
,
Science
342
,
341
(
2013
).
7.
J. S.
Manser
,
J. A.
Christians
, and
P. V.
Kamat
,
Chem. Rev.
116
, 12956 (
2016
).
8.
W.
Tress
,
Adv. Energy Mater.
7
,
1602358
(
2017
).
9.
E. A.
Ponomarev
and
L. M.
Peter
,
J. Electroanal. Chem.
396
,
219
(
1995
).
10.
D.
Vanmaekelbergh
and
P. E.
de Jongh
,
Phys. Rev. B
61
,
4699
(
2000
).
11.
K.
Galkowski
,
A.
Mitioglu
,
A.
Miyata
,
P.
Plochocka
,
O.
Portugall
,
G. E.
Eperon
,
J. T.-W.
Wang
,
T.
Stergiopoulos
,
S. D.
Stranks
,
H. J.
Snaith
, and
R. J.
Nicholas
,
Energy Environ. Sci.
9
,
962
(
2016
).
12.
B. C.
O’Regan
,
P. R. F.
Barnes
,
X.
Li
,
C.
Law
,
E.
Palomares
, and
J. M.
Marin-Beloqui
,
J. Am. Chem. Soc.
137
,
5087
(
2015
).
13.
F.
Fabregat-Santiago
,
G.
Garcia-Belmonte
,
I.
Mora-Seró
, and
J.
Bisquert
,
Phys. Chem. Chem. Phys.
13
,
9083
(
2011
).
14.
D.
Pitarch-Tena
,
T. T.
Ngo
,
M.
Vallés-Pelarda
,
T.
Pauporté
, and
I.
Mora-Seró
,
ACS Energy Lett.
3
,
1044
(
2018
).
15.
A.
Todinova
,
J.
Idígoras
,
M.
Salado
,
S.
Kazim
, and
J. A.
Anta
,
J. Phys. Chem. Lett.
6
,
3923
(
2015
).
16.
Y.
Zhao
and
K.
Zhu
,
J. Phys. Chem. Lett.
4
,
2880
(
2013
).
17.
O.
Almora
,
D.
Miravet
,
G. J.
Matt
,
G.
Garcia-Belmonte
, and
C. J.
Brabec
,
Appl. Phys. Lett.
116
,
013901
(
2020
).
18.
G.
Schlichthörl
,
N. G.
Park
, and
A. J.
Frank
,
J. Phys. Chem. B
103
,
782
(
1999
).
19.
L.
Bertoluzzi
and
S.
Ma
,
Phys. Chem. Chem. Phys.
15
,
4283
(
2013
).
20.
J. A.
Anta
,
J.
Idígoras
,
E.
Guillén
,
J.
Villanueva-Cab
,
H. J.
Mandujano-Ramírez
,
G.
Oskam
,
L.
Pellejà
, and
E.
Palomares
,
Phys. Chem. Chem. Phys.
14
,
10285
(
2012
).
21.
D.
Bernhardsgrütter
and
M. M.
Schmid
,
J. Phys. Chem. C
123
,
30077
(
2019
).
22.
D.
Kiermasch
,
A.
Baumann
,
M.
Fischer
,
V.
Dyakonov
, and
K.
Tvingstedt
,
Energy Environ. Sci.
11
,
629
(
2018
).
23.
A.
Pockett
,
G. E.
Eperon
,
T.
Peltola
,
H. J.
Snaith
,
A.
Walker
,
L. M.
Peter
, and
P. J.
Cameron
,
J. Phys. Chem. C
119
,
3456
(
2015
).
24.
A.
Guerrero
,
G.
Garcia-Belmonte
,
I.
Mora-Sero
,
J.
Bisquert
,
Y. S.
Kang
,
T. J.
Jacobsson
,
J.-P.
Correa-Baena
, and
A.
Hagfeldt
,
J. Phys. Chem. C
120
,
8023
(
2016
).
25.
J.
Halme
,
Phys. Chem. Chem. Phys.
13
,
12435
(
2011
).
26.
L.
Bertoluzzi
and
J.
Bisquert
,
J. Phys. Chem. Lett.
8
,
172
(
2017
).
27.
S.
Ravishankar
,
C.
Aranda
,
P. P.
Boix
,
J. A.
Anta
,
J.
Bisquert
, and
G.
Garcia-Belmonte
,
J. Phys. Chem. Lett.
9
,
3099
(
2018
).
28.
S.
Ravishankar
,
A.
Riquelme
,
S. K.
Sarkar
,
M.
Garcia-Batlle
,
G.
Garcia-Belmonte
, and
J.
Bisquert
,
J. Phys. Chem. C
123
,
24995
(
2019
).
29.
L.
Dloczik
,
O.
Ileperuma
,
I.
Lauermann
,
L. M.
Peter
,
E. A.
Ponomarev
,
G.
Redmond
,
N. J.
Shaw
, and
I.
Uhlendorf
,
J. Phys. Chem. B
101
,
10281
(
1997
).
30.
M.
Rodríguez-Pérez
,
I.
Rodríguez-Gutiérrez
,
A.
Vega-Poot
,
R.
García-Rodríguez
,
G.
Rodríguez-Gattorno
, and
G.
Oskam
,
Electrochim. Acta
258
,
900
(
2017
).
31.
L.
Contreras-Bernal
,
S.
Ramos-Terrón
,
A.
Riquelme
,
P. P.
Boix
,
J.
Idígoras
,
I.
Mora-Seró
, and
J. A.
Anta
,
J. Mater. Chem. A
7
,
12191
(
2019
).
32.
L.
Contreras-Bernal
,
M.
Salado
,
A.
Todinova
,
L.
Calio
,
S.
Ahmad
,
J.
Idígoras
, and
J. A.
Anta
,
J. Phys. Chem. C
121
,
9705
(
2017
).
33.
S.
Ravishankar
,
M.
Garcia-Batlle
,
J.
Bisquert
,
G.
Garcia-Belmonte
,
J.
Odrobina
, and
C.-A.
Schiller
,
J. Phys. Chem. C
124
,
15793
(
2020
).
34.
M.
Grätzel
,
J. Photochem. Photobiol. A
164
,
3
(
2004
).
35.
Y.
Zhou
and
A.
Gray-Weale
,
Phys. Chem. Chem. Phys.
18
,
4476
(
2016
).
36.
W.
Tress
,
M.
Yavari
,
K.
Domanski
,
P.
Yadav
,
B.
Niesen
,
J. P. C.
Baena
,
A.
Hagfeldt
, and
M.
Graetzel
,
Energy Environ. Sci.
11
,
151
(
2018
).
37.
A.
Riquelme
,
L. J.
Bennett
,
N. E.
Courtier
,
M. J.
Wolf
,
L.
Contreras-Bernal
,
A.
Walker
,
G.
Richardson
, and
J. A.
Anta
,
Nanoscale
12
, 17385 (2020).
38.
C.
Wehrenfennig
,
G. E.
Eperon
,
M. B.
Johnston
,
H. J.
Snaith
, and
L. M.
Herz
,
Adv. Mater.
26
,
1584
(
2014
).
39.
C. C.
Stoumpos
,
C. D.
Malliakas
, and
M. G.
Kanatzidis
Inorg. Chem.
52
, 9019 (
2013
).
40.
J. M.
Frost
,
K. T.
Butler
, and
A.
Walsh
,
APL Mater.
2
,
081506
(
2014
).
41.
F.
Brivio
,
A. B.
Walker
, and
A.
Walsh
,
APL Mater.
1
,
042111
(
2013
).
42.
J.
Villanueva-Cab
,
J. A.
Anta
, and
G.
Oskam
,
Phys. Chem. Chem. Phys.
18
,
2303
(
2016
).
43.
S.
Ravishankar
,
C.
Aranda
,
S.
Sanchez
,
J.
Bisquert
,
M.
Saliba
, and
G.
Garcia-Belmonte
,
J. Phys. Chem. C
123
,
6444
(
2019
).
44.
E.
Guillén
,
L. M.
Peter
, and
J. A.
Anta
,
J. Phys. Chem. C
115
,
22622
(
2011
).
45.
J. A.
Anta
,
I.
Mora-Sero
,
T.
Dittrich
, and
J.
Bisquert
,
Phys. Chem. Chem. Phys.
10
,
4478
(
2008
).
46.
J.
Bisquert
,
J. Phys. Chem. B
108
,
2323
(
2004
).
47.
J.
Halme
,
K.
Miettunen
, and
P.
Lund
,
J. Phys. Chem. C
112
,
20491
(
2008
).
48.
L.
Contreras
,
J.
Idígoras
,
A.
Todinova
,
M.
Salado
,
S.
Kazim
,
S.
Ahmad
, and
J. A.
Anta
,
Phys. Chem. Chem. Phys.
18
,
31033
(
2016
).
49.
D.
Meggiolaro
,
E.
Mosconi
, and
F.
De Angelis
,
ACS Energy Lett.
4
,
779
(
2019
).
50.
J.-P.
Correa-Baena
,
M.
Anaya
,
G.
Lozano
,
W.
Tress
,
K.
Domanski
,
M.
Saliba
,
T.
Matsui
,
T. J.
Jacobsson
,
M. E.
Calvo
,
A.
Abate
,
M.
Grätzel
,
H.
Míguez
, and
A.
Hagfeldt
,
Adv. Mater.
28
,
5031
(
2016
).
51.
A.
Mahapatra
,
N.
Parikh
,
H.
Kumari
,
M. K.
Pandey
,
M.
Kumar
,
D.
Prochowicz
,
A.
Kalam
,
M. M.
Tavakoli
, and
P.
Yadav
,
J. Appl. Phys.
127
,
185501
(
2020
).
52.
D.
Moia
,
I.
Gelmetti
,
P.
Calado
,
W.
Fisher
,
M.
Stringer
,
O.
Game
,
Y.
Hu
,
P.
Docampo
,
D.
Lidzey
,
E.
Palomares
,
J.
Nelson
, and
P. R. F.
Barnes
,
Energy Environ. Sci.
12
,
1296
(
2019
).
53.
A.
Walsh
,
D. O.
Scanlon
,
S.
Chen
,
X. G.
Gong
, and
S.-H.
Wei
,
Angew. Chem. Int. Ed. Engl.
54
,
1791
(
2015
).
54.
D. A.
Jacobs
,
H.
Shen
,
F.
Pfeffer
,
J.
Peng
,
T. P.
White
,
F. J.
Beck
, and
K. R.
Catchpole
,
J. Appl. Phys.
124
,
225702
(
2018
).
55.
G.
Richardson
,
S. E. J.
O’Kane
,
R. G.
Niemann
,
T. A.
Peltola
,
J. M.
Foster
,
P. J.
Cameron
, and
A. B.
Walker
,
Energy Environ. Sci.
9
,
1476
(
2016
).
56.
L.
Bertoluzzi
,
C. C.
Boyd
,
N.
Rolston
,
J.
Xu
,
R.
Prasanna
,
B. C.
O’Regan
, and
M. D.
McGehee
,
Joule
4
, 109 (
2019
).
57.
S. A. L.
Weber
,
I. M.
Hermes
,
S.-H.
Turren-Cruz
,
C.
Gort
,
V. W.
Bergmann
,
L.
Gilson
,
A.
Hagfeldt
,
M.
Graetzel
,
W.
Tress
, and
R.
Berger
,
Joule
11
, 2404 (
2018
).
58.
M. H.
Futscher
,
J. M.
Lee
,
L.
McGovern
,
L. A.
Muscarella
,
T.
Wang
,
M. I.
Haider
,
A.
Fakharuddin
,
L.
Schmidt-Mende
, and
B.
Ehrler
,
Mater. Horiz.
6
,
1497
(
2019
).

Supplementary Material

You do not currently have access to this content.