We present a quantification method of carrier recombination velocity of a general grain boundary (GB) by combining steady state photoluminescence (PL) imaging and carrier simulation under uniform illumination. To improve the accuracy and versatility, inclination angles of GBs, which can be obtained from front and rear optical images, were included in the carrier simulation model. As a consequence, simulated PL profiles successfully reproduced the tendency of experiments to exhibit shift of the minimal position from the GB on the front surface to the direction of inclination. Furthermore, by fitting simulated PL profiles with experiments, the carrier recombination velocity was evaluated for various GBs based on the improved model to consider the inclination angle.

1.
F.
Schindler
,
B.
Michl
,
P.
Krenckel
,
S.
Riepe
,
J.
Benick
,
R.
Müller
,
A.
Richter
,
S. W.
Glunz
, and
M. C.
Schubert
,
Sol. Energy Mater. Sol. Cells
171
,
180
(
2017
).
2.
Y. M.
Yang
,
A.
Yu
,
B.
Hsu
,
W. C.
Hsu
,
A.
Yang
, and
C. W.
Lan
,
Prog. Photovolt. Res. Appl.
23
,
340
(
2015
).
3.
Y.-T.
Cheng
,
J.-J.
Ho
,
S.-Y.
Tsai
,
Z.-Z.
Ye
,
W.
Lee
,
D.-S.
Hwang
,
S.-H.
Chang
,
C.-C.
Chang
, and
K. L.
Wang
,
Sol. Energy
85
,
87
(
2011
).
4.
J.
Benick
,
A.
Richter
,
R.
Müller
,
H.
Hauser
,
F.
Feldmann
,
P.
Krenckel
,
S.
Riepe
,
F.
Schindler
,
M. C.
Schubert
,
M.
Hermle
,
A. W.
Bett
, and
S. W.
Glunz
,
IEEE J. Photovolt.
7
,
1171
(
2017
).
5.
M. D.
Sabatino
and
G.
Stokkan
,
Phys. Status Solidi A
210
,
641
(
2013
).
6.
X.
Tang
,
L. A.
Francis
,
L.
Gon
,
F.
Wang
,
J.-P.
Raskin
,
D.
Flandre
,
S.
Zhang
,
D.
You
,
L.
Wu
, and
B.
Dai
,
Sol. Energy Mater. Sol. Cells
117
,
225
(
2013
).
7.
S.
Joonwichien
,
S.
Matsushima
, and
N.
Usami
,
J. Appl. Phys.
113
,
133503
(
2013
).
8.
H. C.
Sio
and
D.
Macdonald
,
Sol. Energy Mater. Sol. Cells
144
,
339
(
2016
).
9.
I.
Takahashi
,
N.
Usami
,
H.
Mizuseki
,
Y.
Kawazoe
,
G.
Stokkan
, and
K.
Nakajima
,
J. Appl. Phys.
109
,
033504
(
2011
).
10.
M. G.
Tsoutsouva
,
P. E.
Vullum
,
K.
Adamczyk
,
M.
Di Sabatino
, and
G.
Stokkan
,
J. Appl. Phys.
127
,
125109
(
2020
).
11.
J.
Chen
and
T.
Sekiguchi
,
Jpn. J. Appl. Phys.
46
,
6489
(
2007
).
12.
R. R.
Prakash
,
K.
Jiptner
,
J.
Chen
,
Y.
Miyamura
,
H.
Harada
, and
T.
Sekiguchi
,
Phys. Status Solidi C
12
,
1099
(
2015
).
13.
Y.
Ohno
,
K.
Inoue
,
K.
Fujiwara
,
K.
Kutsukake
,
M.
Deura
,
I.
Yonenaga
,
N.
Ebisawa
,
Y.
Shimizu
,
K.
Inoue
,
Y.
Nagai
,
H.
Yoshida
,
S.
Takeda
,
S.
Tanaka
, and
M.
Kohyama
,
Appl. Phys. Lett.
110
,
062105
(
2017
).
14.
T.
Yokoi
,
Y.
Noda
,
A.
Nakamura
, and
K.
Matsunaga
,
Phys. Rev. Mater.
4
,
014605
(
2020
).
15.
C.
Donolato
and
R. O.
Bell
,
Rev. Sci. Instrum.
54
,
1005
(
1983
).
16.
G.
Micard
,
G.
Hahn
,
A.
Zuschlag
,
S.
Seren
, and
B.
Terheiden
,
J. Appl. Phys.
108
,
034516
(
2010
).
17.
R.
Corkish
,
T.
Puzzer
,
A. B.
Sproul
, and
K. L.
Luke
,
J. Appl. Phys.
84
,
5473
(
1998
).
18.
A.
Mittiga
,
M.
Capizzi
,
C.
Coluzza
,
A.
Frova
,
V.
Parisi
,
D.
Cavalcoli
,
L.
Moro
, and
M.
Prudenziati
,
J. Appl. Phys.
63
,
4748
(
1988
).
19.
T.
Trupke
,
R. A.
Bardos
,
M. C.
Schubert
, and
W.
Warta
,
Appl. Phys. Lett.
89
,
044107
(
2006
).
20.
J. A.
Giesecke
,
M.
Kasemann
, and
W.
Warta
,
J. Appl. Phys.
106
,
014907
(
2009
).
21.
H. C.
Sio
,
T.
Trupke
, and
D.
Macdonald
,
J. Appl. Phys.
116
,
244905
(
2014
).
22.
M. S.
Wiig
,
H.
Haug
,
R.
Sondena
, and
E. S.
Marstein
,
Energy Proc.
124
,
215
(
2017
).
23.
R.
Har-Lavan
,
R.
Schreiber
,
O.
Yaffe
, and
D.
Cahen
,
J. Appl. Phys.
113
,
084909
(
2013
).
You do not currently have access to this content.